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PREFACE

The aim of the following pages is to present, in a form suit-

able for the use of students in the Mathematical Laboratory,

an account of the various methods of solution of the spherical

triangle, numerical and graphical.

The subject is of importance in view of its applications. It

has also considerable value from the educational point of view

;

it develops the power of dealing wdth " geometry of situation,"

and at the same time provides an excellent training in computa-

tion and furnishes instructive comparisons of the accuracy of

different methods of solution.

I wish to express my thanks to Professor Whittaker, who

invited me to undertake the work and has helped me with many

valuable suggestions ; to Mr A. W. Young, M.A., B.Sc, for read-

ing the manuscript and proofs ; and to Mr E. L. Ince, M.A., B.Sc,

for drawing the greater part of the diagrams.

H. B.

The Mathematical Laboratory,

University of Edinburgh,

August 1916,
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CHAPTER I

THE USE OF LOGARITHMIC TABLES

§ 1. Introductory.—Most of the calculation throughout this

tract involves the use of logarithms, and it is important that

the student should be so expert in their use that he can carry

out the calculations indicated with a minimum of trouble.

The number of decimal places required in the logarithm

depends on the accuracy aimed at ; as a rough guide, it may
be said that four-place tables are sufficient when solving to an

accuracy of minutes, five places when solving to an accuracy of

five seconds, and that six-place tables enable us to work to half-

seconds.

As regards the accuracy needed in various applications of

trigonometry, we may roughly say that in topography and

navigation an accuracy of a half-minute is sufficient, and that

in geodesy and astronomy the limits of accuracy are a second

and a tenth of a second respectively.

Since the angles concerned occur in all four quadrants, the

sine, cosine, or tangent is very frequently negative, and therefore

has to be multiplied by —1 if its logarithm is to have a real

value. This is indicated by writing the letter n after the loga-

rithm of the positive number. The ns of two negative numbers
which are multiplied together, or divided, evidently cancel each

other.

To find the logarithm of the trigonometrical function (sine,

cosine, tangent, etc.) of any angle in the tables (which, of course,

only extend to 90°) we subtract (or add if negative) multiples of

90°, the function being unchanged if the multiple is even, but

becoming the co-function if the multiple is odd.

§ 2. Calculations with Seven-place Tables.—For the most

part seven-place tables will be used in the following pages, the
1 1
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shorter calculation where fewer figures are required being evident.

It will be assumed that the student has access to tables giving

the logarithmic sines, cosines, and tangents for every ten seconds.

In a modern book of seven-place tables we meet with entries

like log 2 = 0-3010300. The stroke under the last means that the

exact value lies somewhere between 0-30102995 and 0-30103000,

so that the most probable value is 0-3010299,75. If we wish to

obtain the seventh digit of our final result as accurately as

is possible with the use of seven-place tables, we can use this

most probable value until the completion of the operation, after-

wards returning to seven places. Similarly, where we find

log 5=0-6989700, we can use 0-6989700,25 as being the most

probable value, the absence of the stroke showing that the

exact value exceeds the given one. The following examples

will make the procedure clear.* As a general rule, however,

if it is important to have the seventh digit accurate in the

final result, we should use tables to more than seven places.

Example 1.—To find lotj cot 124° 17' 10" -24.

This angle being in the second quadrant, the cotangent is negative,

log cot 124° 17' 10"-24 = - log tan 34° 17' 10"-24

Ltan 34°17'10" 9-8336 561,26
-2 9,04

•04 1,808

logtan 34* 17' 10"-24 = 9'8336 572,1

logcot 124° 17' 10"-24 = 9-8336 572,lw.

One digit after the comma is retained not as being correct, but as the most

probable.

Example 2.—Flndlog sin 3i0° 10' 11" '81.

Enter for log cos 70° 10' 11"-81

.

Since the cosines and cotangents decrease as the argument increases, we take

from the table the entry corresponding to the argument next above and subtract

fractions of 10" so as to make the differences additive. The scheme on the left side

is first formed by use of complementary numbers ; the logarithms are then entered

on the right.

70° 10' 20"

-8
- -1

9 -.5304482,25

467,2

5,84

- -09 5,256

cos 70° 10' 11"-81

sin.340°10'ir'-81

= 9-5304960,6

= 9-5304'960,67i

* The data in the following examples have been taken from the seven-figure

logarithmic tables of Schron, which are used in the Mathematical Laboratory o

Edinburgh University.
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Example 3.

—

Find Qfrom

logsin0 = 9-5281423,On

9-5281053,25 •19M3'0''

369,75

352,8 6

16,95

11,76 •29

5,190 •19° 43' 6" -29 =

i.e. a= 340°16'53"-71 or 199° 43 '6" -29

Example 4.

—

Find Qfrom

log cos = 9-7137204,0

259,75 58° 51' 0"

- 55,75

-34,8 1"

-20,95

-20,88 o^-e

- 0,07

= 58°

or 301°

51'

8'

l"-60

58" -40

The procedure is somewhat more difficult when the tabular differences become so

great that proportional part calculation is no longer accurate to the seventh place, as

happens with the logarithmic sines and tangents of very small angles and the loga-

rithmic cosines of angles near a right angle. In such cases additional tables are

given, the S tables for the sines and the T tables for the tangents. We first convert

the angle to seconds and find the logarithm of the resulting number, and to this is

added tlie value given in the S or T table for the given angle, the sum being the

required logarithm. The method of entering the S or T tables for the required value

is fully explained in the introduction to Schron.

§ 3. Choice of Function.—When we have the choice of

determining an angle from its sine, its cosine, or its tangent,

we prefer the tangent, as its tabular differences are everywhere

greater than either of the other two. When the choice lies

between sine and cosine, the same argument leads us to choose

whichever is the smaller. Conversely, when we require to find

the logarithm of one of these functions, the tangent is the most

difiicult to get accurately to, say, seven places, and of the sine or

cosine, that one is the more difficult which is the smaller. For

example, in certain calculations (§ 46) it is required to solve

equations of the form
X sin y = a

xcosy = h.
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Here, therefore, we first find y from tan y = a/6, and then find m
by using whichever is the greater, sin y or cos y.

J

Example 5.

—

Find x and yfrom 1
a; sin 2/ = 2 -417132 ^H
XQOsy=- 8-141601. ^H

We have ^^11
log (a? sin t/) = 0*3833 003,9 ^^l
log (x cosy) = 0-9107 098,371 I^hI

Ltan2/= 9*4725 905,6?i /. 1/= - 16" 32' 7"-61 ^H
Lcos2/= 9-9816 572,7 l|

log a:= 0-9290 525,671 x= -0-8492 833 '|

§ 4. Logarithms of Addition and Subtraction *—One of

the commonest operations in computation is the determination

of log {jp-\-q) when log _p and log q are known. This may, of

course, be done by finding the antilogarithras of log p and log q,

and hence obtaining the logarithm of their sum ; it is, how-

ever, often convenient to make use of a table of addition-loga-

rithms t for this purpose. This is simply a table of the function

log (l-f-l/cc) corresponding to the argument logx; if we denote

pjq by X (where jp > q), we can calculate log x from the equation

\Qgx = \og'p-\ogq,

and then, obtaining the value of log(l-|-l/a;) from the table of

addition-logarithms, we have log {p -f q) from the equation

log {p + q) = logp + log (1 + Ijx).

The differences in the table are negative, so that we proceed

as in using the cosine or cotangent tables {cf. Example 2 above).

Example 6.—Given log a;= 0-41 62 147, find log(l + l/a;).

From the table we have the corresponding tabular values

4163 1409 610

8 221,6

5 13,85

3 831

4162 147 1409 846,3

The computation of log (p+ g) should be arranged as in the

following example :

—

* Called also Gaussian Logarithms, Gauss having prepared (1812) the first tables

(five places). The invention is, however, due to Leonelli (1803).

t The best six-place table is that of B. Cohn, Tafeln d. Add. u. Sub. Log.,

Engelmann, Leipzig (1909). For seven places we have that of J. Zech, Tafeln d.

Add. u. Sub. Log., Engelmann, Leipzig (1849).
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Example 7.—Given log^= 0-6685 166, logg = 0-2523 019, to find log(p + ^).

log p = 0-6685 166 (given)

addit. log =0-1409 846 (the tabular value corresponding to line 4)

log ^ = 0-2523 019 (given)

logi;c= 0-4162 147 {\ogp-\ogq)

log (^ + ^)= 0-8095 012 (adding lines 1 and 2).

Similarly, in order to find log(p — g) when logp and log g are

known, we write x=p/q, and then have

log (p-q) = \ogp - log
^ _ ^,

-

The values of log corresponding to the argument log a;

are given in a table of Suhtraction-logarithTns.

Example 8.—Given log 03= 0-4162 147, to findlog(l - 1/x).

By the Subtraction table we have

4162 147

297 2100 7

-150
- 144,9 9

5,1

4,8 3

2100 793

Example 9.
—

"With the same values of log^ and logg' as in Example 7, to find

log(^-g').
log2)= 0-6685 166 (given)

sub. log= 0-2100 793 (the tabular value for line 4)

log g= 0-2523 019 (given)

log 03= 0-4162 147 i'^ogp-logq)

log {p - g-) = 0-4584 373 (subtracting line 2 from line 1).

Example 10.—Find afrom co8a= cos & cose + sin h sin c cos A,where &= 49° 24' 10"*23,

c= 38° 46' 10" -35 ; A = 110° 51' 14"-84.

Lcos 6=9-8134 052,1 Lsin& = 9-8804 154,6

Lco8C= 9-8919 113,6 Lsinc= 9-7967 057,4

log 2? == 9-7053 165,7

9-2285 588,lw

Lcos A =

log 2 =

= 9-5514 376, Iw

= 9-2285 588,171

log a;:= -4767 577,6w

640 •1762 7

-624
-600

- 240

logi?= 9'

3

1

ibtr. log.1762 731 = St

•7053 166

Lcos a = 9-5290 435

a= 70°14'20" -12.
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Examples

:

—
(1) Verify by means of the tables the following :

—

Lsin 16°45'38"-21 =9-4599 555,6

L tan 275° 14' 28"-42 = 1-0374 758,5?i

Lcos 92° 10' 11" -24 = 8 -5781 910, 6?i.

(2) Taking the above logarithms as given, find the corresponding angles.

(3) Verify by addition-logarithms the following identities

—

2 + 3 = 5;7-6 = l; -5 + 4=-l; -l-l=-2.



CHAPTER II

SPHERICAL TRIANGLES

§ 5. Circles on a Sphere and their Terminology.—When a

plane passes through the centre of a sphere the intersection of

the plane and sphere is called a Great Circle. If the plane does

not pass through the centre it cuts the sphere, if at all, in a

Small Circle.

Consider the intersections of a series of parallel planes with

the sphere. Symmetry shows that the centres of all the circles

of intersection (fig. 1) will lie on a straight line NS—the axis

—which is perpendicular to all the planes. Two of the series

of parallel planes will intersect the sphere in circles of zero

radius—in other words, will touch the sphere. Their points of

contact will be the ends of the axis and are called the poles of

tlie circles. A pole is clearly equidistant from all points on the

circle of which it is a pole, and thus corresponds in a certain

sense to the centre of a circle in plane geometry. The particular

circle of the series which is a great circle is called the equator.

It is at a quadrant's distance from each of its poles.

Each circle has thus two poles. It is convenient, however,

to define a unique pole by the following convention : we
give the circle a "sense," describing motion in one direction

round the circle as " positive " and motion in the opposite

direction as " negative." The pole of the circle is then described

as that one which would be towards the left-hand side of a

man walking on the sphere in the positive direction round the

circle. Another mode of describing the pole is to say that an

observer situated at the pole would regard the positive direction

in the circle as anti-clockw4se.

If we take now a series of planes through the axis, tlieir

intersections with the sphere are a series of great circles which

all pass through the poles of the first series of circles and which
7
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intersect every circle of the first series at right angles. These

are called Meridian Circles.

///
/^ 7 Vx

nl"! 1 '^— -"-VAfff-4:^^ \
^

p
^"^ >^^' 6~~

^hs^T—-^

\

~/

/ /
^^r " \

7 ^
/.^=^^

Fig. 1.

The region on the sphere which is enclosed between, any
two semi-great circles

—

e.g. two meridians—is called a Lune.

§ 6. Coordinates on a Sphere.—It will be seen that the two
series of circles with which we have covered the sphere in the

last section enable us to describe the position of a point on a

sphere in the same way as by the use of graph paper we can

describe the position of a point in a plane. In the case of the

sphere, the " curves of reference " may be taken to be the equator

which we have drawn and one of the meridians which may be

called the " prime meridian."

This is the system which is employed on the surface of the

earth, the two series being the parallels of latitude and the lines

of longitude. The curves of reference are the Equator of the

earth and the Meridian through the central " wire " of the

Meridian-Circle at Greenwich Observatory.

It is evident that if R be the radius of the sphere and r the
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radius of a small circle |9g, we have PQ = RO and pq^rO, where

6 is the angle between the planes containing NpP and NqQ.

Therefore

pq = PQ.rjR = PQ BmpON= FQ cos <^.

In other words, distance measured along a parallel of latitude

is equal to the difference in longitude x cosine of the latitude.

§ 7. Spherical Triangles.—The straight lines in which the

planes of fig. 1 cut each other consist of the axis and other lines

Fig. 2.

all perpendicular to it. We now proceed to the main problem

of this book, viz. :

—

Given any three concurrent lines in space,

to find the relations that connect the angles betiveen them and
between their containing planes.

Let Oa, 0/3, Oy be any three lines through 0, so that the

three planes, whose intersections they are, form a trihedral

angle.

About as centre describe a sphere of unit radius, meeting

the three lines in J., 5, (7 (fig. 2). The three containing planes

BOC, GOA, AOB will plainly cut the sphere in great circles, so

that the points A, B, G are joined by arcs of great circles.

A three-sided figure drawn on a sphere is called a Spherical

Triangle if each of its sides is part of a great circle ; or we may
regard a spherical triangle as the intersection of a sphere and
a trihedral angle having its vertex at the centre.
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§ 8. Ambiguity regarding* the Triangle.—The three vertices A, B,

not uniquely determine the triangle ; for we may proceed from A to B along a gn

circle by one or other of two arcs, the one greater than a semicircle, the other less?

Similarly for the " sides " BC and CA, so that we have 2 x 2 x 2 or 8 possible triangles

all having the same vertices. Since, further, for any one of these triangles the

remainder of the sphere also forms a triangle the total number becomes 16. In

order to define which triangle is meant in view of this latter alternative, we adopt

the following convention : as we proceed along the sides joining the vertices the triangle

is on our left. 1
§ 9. Definitions.—Our problem is thus seen to be similar to

that of plane trigonometry, having, however, a sphere instead of

a plane as fundamental surface. As in plane trigonometry, the

letters A, B, C are used to denote angles, and <x, 6, c the opposite

sides of a triangle. Since the sphere has unit radius, a, 6, c also

measure the angles between the lines Oa, 0/3, Oy (fig. 2). By
the " angle A " is meant the angle between the tangents at the

point A to the two sides b and c, which join G to A and A to B
respectively; the angle is on our left as we proceed along the

sides turning the corner at A. Since OA is perpendicular to

the arcs b and c at this point, the angle A is also a measure of

one of the two angles between the planes COA, A OB, the other

angle being its supplement. The student should memorise the

letters in the order they occur, viz. a, C, b, A, c, B, a, C, . . . etc.

If OA be produced backwards, it will intersect the sphere

again in a point A' diametrically opposite to A, the figure

ABA'G forming a lune. Two triangles such as ABC and CBA',

which together form a lune, are said to be co-lunar.

§ 10. Stereographie Projection.—Owing to the difficulty of visualising in

all cases the possible triangles which can be drawn on a sphere, it is convenient to

have a method of representing them on a plane. To do this stereographie projection

may be employed. Imagine a plane P drawn to touch the sphere at any point
;

and from the diametrically opposite point 0' project the sides of the spherical

triangle on the plane. Since all circles project into circles and all angles into equal

angles, it is easy to draw the projection of any triangle. Figs. 3a, 3b, 3c, 3d are

representative of the different cases that can arise when the three vertices are given.

As we traverse the sides in the direction of the arrows, the "interior" of the triangles,

and the angles, are on our left. Each figure thus represents two triangles according

to the direction of the arrow. Since the parts of the sphere indefinitely near (/

project to an indefinitely great distance, it is only those triangles which do not

contain 0' which have a projection of finite area. In 3a the vertices are joined by
sides all less than 180°. Any side greater than 180? must cut any other side

(produced, if necessary) in two points, as was seen in the last section. The angles in

3a are all less or all greater than 180° according to the arrow. In 3b one of the

sides is greater than 180°, so that it is one of three possible cases. Either one or
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Fig. 3a. Fig. 3b.

Fig. 3c. Fig. 3d.
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two of the angles are greater than 180° according to the arrow. In 3c two of the

sides are greater than 180°, so that it also is one of three possible cases, and of the

angles one or two are greater than 180° according to the arrow. In 3d all the sides

are greater than 180° and the angles are all less or all greater than 180° according to

the arrow. We have thus accounted for all the eight (or sixteen) possible triangles

having given vertices. Since in practical applications no side ever cuts another

side in more than one point without being produced, cases 3c and 3d occur only

theoretical questions.

To draw these circles it is convenient to choose as point the pole of one of the

circles a, say, so that the arc a is drawn to scale (the poles of the other circles do not

project into centres). Mark the point C" diametrically opposite to C, and through

draw a line OL perpendicular to CC. With some point on L as centre, draw the

circle b through C and C", making the angle at G equal to the given value. Similarly

draw the side c to pass through the point B' diametrically opposite B.

§ 11. Possible Triangles.—It can be shown from the pre-

ceding construction, and will be demonstrated later (§ 22), that

when any three of the six parts A, c, B, a, C, h are given, there

are only two possible triangles (if any). Even this ambiguity

is generally removed in practice by the conditions of the problem.

For instance, a large class of problems in astronomy restricts

one side to be in the first two quadrants, while still oftener each

of the parts is required to be less than two right angles, or to

have positive sines, a restriction which we may shortly refer to

as tlie Sine Convention. It will also be shown as we proceed

that when one of the possible alternatives for the fourth part is

chosen, then the remaining two parts are uniquely determinate.

Our problem is thus seen to be equivalent to finding a fourth

part when three are given, i.e. to finding relations connecting

four parts. Following d'Ocagne, we divide the different cases

that can arise into three groups :

—

§ 12. D'Ocagne's Classification.—Let us number the con-

secutive parts of the triangle, viz. a, C, h, A, c, B, a, . . . etc.,

1, 2, 3, 4, 5, 6, beginning with any one of them.

The Case (2.2).—The four parts in this case consist of two
groups of two separated from each other by one intervening

part, e.g., A, c, — , a, C, or by number—say, 1, 2, 4, 5.

The Case (3.1).—Here three of the parts are consecutive and
the other separated. We may number them 1, 2, 3, 5, e.g., a, C,

6, — , c, or A, c, B, — , C.

The Case (4.0).—Here all four parts are consecutive 1, 2, 3, 4,

e.g., a, C, h. A, or A, c, B, a.
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Disregarding ambiguities for the moment, it will be seen that

we can solve a triangle completely by the use of (3.1), for by
one application we have the parts 1, 2, 3, 5 ; then by a second

application the parts 1, 3, 4, 5 ; and finally 5, 6, 1, 3. Similarly

if at least two of the given parts are adjacent, one application

of (4.0) gives, 1, 2, 3, 4; a second 2, 3, 4, 5 ; and finally 3, 4,

5, 6. We cannot, however, solve by the use of (2.2) alone.

We now proceed to derive thefundamental formulse for these

three cases.

§ 13. The Case (2.2). The Sine Formula
OA (fig. 4) OP of unit length,

and through P draw a plane

having OA as normal and cut-

ting OB, 00 in Q and R re-

spectively. Let M he the pro-

jection on the line PQ of the

point R. The angle RPQ is

the angle A between the planes

COA, A OB; and a, b, c are

as shown.

We have MR =PR sin A = OR sin b sin A.

Similarly MR = OR sin a sin B.

Hence

Cut off from

c

Fig. 4.

Similarly

sin a sin B = sin A sin b

sin b sin C = sin B sin c

sin c Bill A = sin C sin a

(1)

these equations, being obtained by projection, are true for all

quadrants of the variables involved.

14. Transformations of the Sine Formula.—From

we have

sin A _ sin a

sin B ~ sin b

sin A - sin B _ sin a - sin b

sin A + sin B ~ sin a + sin 6
'

tan i(A - B) tan ^{a + &) = tan i(a - b) tan ^(A + B) (2)

If the sine convention holds so that h{a + b) and ^(A + B) are both in the first

quadrant, this shows that tan^(A-B) and tan^(«-6) are of the same sign, i.e.

A - B and a-b are either both positive or bath negative.
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•ISimilarly we have

tani(A-a)tani(B + &) = tanJ(B-&)tani(A + a) . . (3)

which shows that with the same convention A - a and B - & are also both positive

or both negative.

The sine formula can also be written in the form

sin a sin^ (45° - ^B) = cos \{(i + h) sin \{a - &) + sin h sin^ (45° - ^A)

\
§ 15. The Case (3.1). The Cosine Formula.—We shall now

find the relation connecting three consecutive parts of a spherical

triangle and a separated side.

Referring again to fig. 4, we have, since P is the projection of

both U and Q on OA—
OR = sec h PR = tan h

0Q = sec c PQ = tan c.

Applying plane trigonometry to the triangles ORQ and PRQ,
we have

Ra^=0R^ + 0Q^-20R.0Q cos a
.

and
RQ^ = PR^ + PQ^ - 2PR . PQ cos A

i.e.

RQ^ = sec^ b + sec^ c — 2 sec b sec c cos a

and
RQ^ = tan^ b + tan^ c - 2 tan b tan c cos A.

.'. Subtracting, we have

= 1 + tan b tan c cos A - sec b sec c cos a,

or, multiplying throughout by cos 6 cos c and rearranging,

cos a= cos Z> cos c + sin 6 sin c cos A
Similarly

cos b = cos c cos a + sin c sin a cos B '>
. . • (5)

and
cos c = cos a cos 6 + sin a sin 6 cos C

^

To complete the solution of the case (3.1) we require the

relation connecting three consecutive parts and a separated

angle, e.g. A, c, B, and C. This will be given in § 21.

§ 16. Another Proof of the Sine Formula.—The Cosine formula is often

called t\iQ fundamental formula of Spherical Trigonometry from the fact that if none
of the parts exceed 180°, all the other formulae may be deduced from it. The Sine

formula can be deduced as follows :

—
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cos a - cos b cos c
From cos A =

sin b

. „. - r, . (1 -cos^J) (1 -cos2c)-(cosa-cos& cosc)^
we have sin^ A= l -cos^ A = ^ -^

. ^i . „
-

siii^ sin^ c

sin^ A _ 1 - cos^ a - cos^ b - cos^ c + 2 cos a cos b cos c

sin'^ a sin^ a sin^ 6 sin^c

.
•. by symmetry

sin^A _ sin'^ B _ sin^ C ,

sin-^ a ~ sin'^ b sin'^c

assuming all the sines positive, and taking roots, we obtain the Sine formula,

§ 17. Auxiliary Angles.—This cosine formula is not, as is

the sine formula, in a form adapted to logarithmic calculation.

If, however, we introduce a new quantity defined by

tan ^ = tan&cos A,

the first equation of group (5) can be written

cos a = cos b cos c + sin b sin c cot b tan

i.e. cos cos a = cos (c - 0) cos b . . . . (a)

which is in the required product form.

Similarly, interchanging b and c, we have

tan 0' — tan c cos A
cos 0' cos a = cos (b - 6') cos c . . . . (^)

Having first found Q (or 0'), supposing that A and h (or c) are

given, we obtain the required fourth part a or c (or h) from

equation (a) or (^).

Similarly for any other equation of group (5).

Example 1.—Given & = 49' 24' 10"-23, A = 110° 51' 14"-84, a=70° 14' 20"-12,

find c< 180°.

L tan & = 10 -0670 102,5

LcosA= 9-5514 376,lw

e= -22°33'25"-66Ltan^=

Lcos& =

9-6184 478,6w

9-8134 052,1

Lcos&=
Lcos a=
Lcos0=

0-1865 947,9

9-5290 434,7

9-9654 357,2

L cos (c-^)= 9-6810 739,8 c-e= 61° 19^ 36"-01

c= 38°46'10"-35.

The student should verify the above calculation as far as seven-place tables will

permit by using the value of c obtained, together with a and A, to find b.

Example 2.—Given a= 31° 42' 16"-4, & = 36° 17' 10"-0, C = 98° 12' 40"-0, find c.

{Ans.: 50° 6' 24" -0.)
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§ 18. Employment of Gaussian Logarithms.—By means

the " auxiliary angle " of last section, we can find the value

any one of the four variables of the cosine formula when the

other three are given. When, however, the cosine of the part

to be found from this formula can be expressed directly as the

sum of two terms both calculable, we can proceed directly and

with slightly less working by means of the Gaussian logarithms

of § 4. For example, we have

cos a — (cos /; cos c) + (sin h sin c cos A)

and
cos A

sin h sin c
+ ( - cot h cot c).

Taking the value for c obtained in the example worked above

viz. 38° 46' 10''*35, together with the given values of h and A'J

we can solve in this way for a. The calculation has been pern

formed in § 4, giving a = 70° 14' 2^"'12, and thus verifying th(

value obtained for c.

Examples.—Given 6= 49° 24' 10"-23, c= S8° 36' 10"-35, show that the following

values for a and A correspond to each other :

—

«!= 70° 14' 20"-12 Ai = 110° 51' 14"-84

^2= 71° 10' 21"'00 A2=112° 51' 3"-16

as= 82° 27' 43" -00 A3=139° 1' 16"-75

^4= 310° 15' 19" -00 A4= 73° 0' 55" '89.

and

we obtain

§ 19. Case (4.0). Cotangent Formulae.—If in the equation,

cos a = cos b cos c + sin b sin c cos A

we substitute for cos c and sin c from

cos c = cos a cos b+ sin a sin b cos C

sin c = sin C sin a/sin A

cot a sin b = cos b cos C + cot A sin C,

connecting the four consecutive parts a, C, 6, A.

By interchanging letters we can write down five similar

equations, or altogether the following six:

—

cot a sin 6 = cos & cos C + cot A sin C
cot b sin c = cos c cos A + cot B sin A
cot c sin a = cos a cos B + cot C sin B
cot6sina = cosacosC + cot B sin C ' * ' • \"/

cot c sin & = cos & cosA + cot C sin A
cot a sin c = cos c cos B + cot A sin B
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These, as will be seen, solve all possible cases of four consecutive

parts, and are all included in the following rule :

—

If we number any four consecutive parts 1, 2, 3, 4 either way-

round where 1 is a side, then

cot 1 cot 4
cos 2 cos 3

sin 2 sin 3

It will be noticed that the cotangents are for the first and

last parts, and that the numbers go in regular order round

the determinant.

§ 20. Solution by Gaussian Logarithms.—In each of the

above cotangent group of formulae, two of the variables (b and

C in the first one) enter twice, while the remaining two (a, A),

which are the first and last ones of the four consecutive parts,

occur once only. It follows that, just as was the case with the

cosine group, we can use Gaussian logarithms (§ 18) to solve for

either of the two end parts in the case (4.0). It will be shown
later that any one of the four parts can be found directly

when three are given, by introducing an auxiliary angle into

the cotangent formula.

Examples

:

—
(1) Given 6 = 49° 24' 10"-23, A = 110"' 51' U"-8i, c = S8° 46' 10"-35, find in

succession by the cotangent formula B and a (less than 180°).

(B = 48° 56' 5"-07; a= 70° 14' 20"-12.)

(2) Given a = 21° 32' 0"-50, = 171° 48' 42"-40, 6-23° 27' 25"-53, find A and
c (<180°). (A = 4° 14' 58"-00; c= 44° 52' ll"-00.)

§ 21. Completion of Cosine Formula.—Applying the co-

tangent formula to the first four of B, a, C, b, A, and to the last,

four, we have

cot B sin C- cot & sin a= -cos a cos C . . . (!')

and
cot A sin C - cot a sin b= - cos b cos C . . . (2')

or, since sin a/sin b = sin A/sin B,

cot B sin C - cos b sin A/sin B + cos a cos C = . . (3')

and
cot A sin C - cos a sin B/sin A + cos b cos C = . . (4')

To eliminate the fourth part b multiply (3') by sin B cos C
and (4') by sin A and add; there results after division by
sin C—

2
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COS A = - cos B cos C + sin B sin C cos a\

Similarly
cos B = - cos C cos A + sin C sin A cos by . • (7^)

and
cos C = - cos A cos B + sin A sin B cos c J

These three equations together with group (5) complete the

case (3.1).

§ 22. Fundamental Formulae.—We may now group together

for reference representatives of the standard formulae for the

three different cases

—

Sine Formula. Case (2.2).

sin A sin B sin C
sin a sin b sin c

Cosine Formula. Case (3.1).

cos a = cos b cos c + sin & sin c cos A
cosA= -cosBcosC + sinBsinCcosa

Cotangent Formula. Case (4.0).

cot a sin b = cot A sin G + cos b cos C . . • (y)

It is to be kept in mind that any one of these groups can be

deduced from the other two, so that there are really only two
fundamental formulae.

If we are given any three of the six parts A, c, B, a, C, 6, w^e

can, by means of (a), or (/3), or (y), obtain the value of the sine,

cosine, or tangent of any fourth part. This restricts the part to

be in one of two quadrants, but does not solve uniquely. There

are thus always two possible values when three parts are given,

unless one of them is excluded by other considerations. Havings

decided upon one of the alternatives, then, to get a fifth part we
can employ two of the three forms (a), (/3), (y)— a third would
give no further information—and obtain values for the sine and
cosine, the sine and tangent, or the cosine and tangent as the

case may be, and thus the quadrant as well as the magnitude of

the part is determined. Similarly for the sixth part. We must
therefore keep in mind that unless the problem is otherwise

limited we need two of the equations a, ^, y—generally either

the cosine or the cotangent formula is chosen together with the

sine formula—to solve the triangle.
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Example.— Given b = bO'

the cotangent formula.

24"-0, A = 49" 46' lO"'!, C = 42° 41' l"-8, find a from

{Ans.: a= 36°17' 10"-0.)

§ 23. A Transformation of the Formulse.—It will be noticed

that the substitution of tt — A, tt — B, tt — C for A, B, C respec-

tively in the two sets of formulse (5) and (7) makes (5) identical

with (7) except that w^here one has angles the other has sides.

The same substitution affects the six cotangent formula3 in the

same way if we divide them arbitrarily into two groups of three.

Similarly again for the

sine formulse. We thus

see that if for angles Ave

took in all cases their

supplements, we would

always be at liberty,

in any formula to be

deduced, to interchano-e

sides and angles. Such
a convention as reo^ards

angles would be equiva-

lent to the following:

Instead of taking A as

usual to mean the angle inside the triangle—on the left—as

we traverse its side in the direction of the arrows (fig. 5), we
takie it to mean the angle between the positive directions of

the sides 6 and c at the point A.

Although it would be an advantage in certain cases to be

able to interchange sides and angles in this simple manner, the

convention has not been adopted practically.

24. The Polar Substitution.—We notice further that if we
change sides into angles and angles into sides in the different

cases a, (3, y, by the substitution

A = 77 -a B = 7r-b' C = TT - C'

a = TT - A' b=7r-B' C =7r-C'

and then omit the accents, we merely obtain other formulse of

the same group over again. This proceeding is therefore valid,

and in any formula which we deduce from a, 3, y we shall be at
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liberty to make this substitution. We shall refer to it as the

"polar substitution,

§ 25. Half-Angles in Terms of Sides.—We now proceed to

deduce other useful formulae from the fundamental ones.

We have
n 9 1 A 1 A 1 .

COS a — cos h cos c
2 cos2 iA = 1 + cos A = 1 + ,

—

—-.
^ sm sm c

_ cos a - cos (& + c) _ 2 sin J(a + 6 + c) sin \{h + c - a)
~

sin 6 sin c ~ sin h sin c

2 sin s sin (s- a) , ^ ,
,

,=
;

.-^^ 1 where 2s = a + o + c.

sin b sin c

Therefore

V I sin i sin c )

and two similar formulae for cos JB and cos JC.

Again,

2 sin^ JA = 1 - cos A = 1
cos a - cos h cos

sin h sin c

whence

sin i1A=+ / f sin (g - ^>) sin (s - c)
(

^ VI sin ^ sin c )

and two similar formulae for sin JB and sin JC.

By division we have

tan AA=± / J
sin {s - &) sin (g - c)

\

V I sin s sin (s - a) j

(10

with two similar formulae for tan JB and tan \C, where
every case 2s= a+h-^c.

If we write

m= + ^{sin (s-a) sin (s— /)) sin (s-c)/sins},

equation (10) can be conveniently written

tan JA =

Similarly
sin (s - a)

tan JB = + -

and
sin (« - h)

tan iC = ±
sin {s - c)

(n;
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In nearly all practical cases the plus sign is to be taken

before the roots in the above formulae, and it will be shown in

§ 28 below that the signs in group (11) are either all plus or all

minus.

§ 26. Half-Sides in terms of Angles.—Proceeding in exactly

the same way as in last section with the equation

cos A = - cos B cos C + sin B sin C cos a,

we can show that

Similarly

and

sm

/( cos(8-B)cos(S-C) l

_ (12^
^ ~V I sin B sin C; I ^ '

, /( -cosSco8(S-A) ) 3,
2 V I sin B sin C )

^ '

la- + / J
- cos S cos (S - A) 1 ,,,.

^""-V lcos(S-B)cos(S-C)l •
^

*'

with similar formulae for sin ^6, sin^c, cos J6, cosjc, tan |6,

and tan Jc, where in all cases 2S =A+ B+ C.

Writing

M — -4- / i
~ ^^^ ^ I~ V I cos (S - A) cos (S - B) cos (S - C) J

equation (14) can be conveniently written

tan|a = ± M cos (S - A)^

Similarly
tani6= ±Mcos(S-B)l . . . (15)

and
tan Jc= ±Mcos(S-C),

In nearly all practical cases the plus sign is to be taken

before the roots in these formulae, and it will be shown in § 28

below that the signs in group (15) are either all plus or all minus.

Example.—If^ denote the perpendicular from A on the side BG, show that

sinj:?=: -,— v/ \ sin s sin (s - a) sin (s - b) sin (s-c) [

.

sm a V L J

§ 27. Equations connecting more than Four Parts.— All the

formulae given above have been for four parts only. Formulae

connecting five or six parts are sometimes useful for solving

triangles, but more frequently they serve as convenient check



22 THE SOLUTION OF SPHERICAL TRIANGLES [CH. II

equations for the values of two or more parts obtained by other

means.

Five Parts. Napier's Analogies.—To connect the five parts

B, a, C, b, A we combine the cosine formulae for the parts B, a, C,

— , A, and for B, — , C, h, A. Thus—

cos B + cos C cos A = sin C sin A cos b

cos A + cos B cos C = sin B sin C cos a
;

.'. by addition

(cos A + cos B)(l + cos C) = sin C(sin A cos b + sin B cos a).

Now, since

sin A sin B
sin a sin b

=P (say),

this becomes

But

.-. by division

that is,

(cos A + cos B)( I + cos C)=p sin C sin {a + b).

sin A + sin B =p (sin a + sin b)
;

sin A + sin B sin a + sin 6 1 + cos C
cos A + cos B sin (a + b) sin C

^ ^ cos ^{a + b) ^
(16)

Now, by equation (3)

tan ^(A - B) tan J(a + b) = tan J(a - b) tan J^(A + B)

;

multiplying both sides of (16) by the corresponding sides of this

equation we have

—

tanJ(A-B) = ^i^ii(^)cot|C . . . (17)

Similarly we can derive equations connecting the five parts

B, a, C, 6, A ; or, applying the polar substitution to (16) and (17),

we have at once

. . (18)
cosJ(A + B)

tan A(a-fe) = ^'"i''^--f) tank .

^^
' smJ(A + B)

(19)

The four equations (16), (17), (18), (19) were discovered by Napier and published

in 1614 in his Mirifici Logarithmorum Canonis Descriptio. The name Analogy refers

to the form in which they were originally given, as proportions

cos i(a + h) : cos h{a - b) : : cot ^C : tan ^(A + B), etc.
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Example.—For a right-angled triangle (A = 90°) establish Prony's Theorem

sin (a-c) = sin &.cos c.tan |B = tan 6. cos a. tan |B.

§ 28. Ambiguous Signs in Tangent Formulse.—In group (li), expressing

the tangent of half-angles in terms of the sides, the signs are to be taken either all

plus or all minus in any triangle.

For, if possible, let tan ^A have a plus sign before the root and tan ^B a minus

sii,ai. Then, by division

—

tan 2-A. _ _ sin (<?-&)

tan ^B sin (5 -a)

. tan ^A - tan ^B _ sin {s-h) + sin (s - a)

tan|A + tan|B sin (s - &) - sin (s - a)

i.e.
sini(-'^-B)^ tan^c

sini(A-fB) tani(a-&)

This by (19) implies that sin-^(A-B) = sin2^(A-}-B), which cannot be true in

general ; whence the result.

In exactly the same way, making use of the corresponding Napier Analogy (17),

we.can show that in group (15) the signs are either all plus or all minus.

§ 29. All the Parts. Delambre's Analogies.—By the pre-

ceding section

tan JA _ sin I^A cos JB _ sin(s— 6) /y\

tan JB ~ cos JA sin JB
""

sin (s - a)

Adding unity to both sides, we have

sin J(A -f B) _ 2 sin |c cos \{a - h) /2'\

cos JA sin JB sin {s— a)

Now, by direct substitution of the £ormul93 in § 25, we easily find

cos ^A sin JB _ sin (.s'— a) , ^,s

cos ^C ~ sin c

Multiplying corresponding sides of (2') and (3'), we have

sini(A + B) ^ ^
GO^\{a-h)

^
^ ^ ^20)

cos JC cos ^c

Again, subtracting unity from both sides of (1'), we have

sin |(A - B) _ 2 cos \c sin \{a - b)

cos JA sin JB sin {s-a)

and multiplying corresponding sides of this and (3'),

sini(A-B) ^ ^ sin i(a - h)
^

_ .(21)
cos^C sin Jc
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The doubtful signs in (20) and (21) are either both plus

or both minus in any triangle; for division of corresponding

sides gives agreement with (19) only on this condition.

Applying the polar substitution to (20), we have

cos |(A - B
) ^ _^_

sin |(a + b)
^

^ ^ ^22)
sin |C ~ sin Jc

the upper signs or the lower signs of the two equations being

taken together.

Multiplying this by the corresponding sides of (18) written

in the form
cos J(A + B) _ cot J(a + 6)

cos~i(A - B) ~ "cot Jc '

we have
cos |(A + B) ^ _^

cos l(a + h)
^

.^^.

sin |C ~ cos |c

with the same rule as regards double sign.

Equations (20), (21), (22), (23)_ thus form a group in which

for any triangle the signs are either all positive or all negative.

They were discovered by Delambre (1809).

Example.—Verify Delambre's analogies numerically for the spherical triangle

whose parts are

a= 50'' 6' 24" -0 A = 98° 12' 40"-0

b= SV 42' 16"-4 B = 42° 41' l"-8

c= 36° 17' 10"-0 C = 49° 46' lO"'].

§ 30. Areas of Spherical Triangles.—From our definition

of a lune (§ 4) it is obvious that its area is the same fraction of

the area of the sphere as its angle is of four right angles, i.e.

Area of Lune = (A/27r) x iirr^ = 2Ar^,

where A is the angle of the lune and r is the radius of the

sphere.

Referring to fig. 2, we may regard the hemisphere on which
the triangle ABC lies as equivalent to the lune C'BCA -{-the lune

B'CBA+ {the triangle ABC+ the triangle ^^'C^- twice the

triangle ABC. Now, it is evident that the triangles ABC and
A'B'C are equal in area, each element of the one being dia-

metrically opposite to a corresponding one of the other, so that

the triangles ABC and AB'C together form a lune of angle A.
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Therefore remembering the expression for the area of a lune,

and denoting the required area of ABC by A, we have

Area of hemisphere = ^-n-r^ = 2Ar^ + 2hr'^ + 2Cr'^ - 2 A , or

Area of spherical triangle = (A + B + C - 27r)r^.

The expression A+ B+ C— 27r, denoting the amount by which
the sum of the angles of a spherical triangle exceeds those of a
plane triangle, is called the Spherical Excess and is frequently

denoted by the letter E. Evidently in the notation of § 26

we have

Example 1.—Deduce from Delambre's Analogies the formulse

tanP tan i(2A - E) = tan ^(s - b) tan l{s - c)

tan ^E cot ^(2A - E) = tan ^s tan l{s - a),

and hence derive UHuiliers Theorem

tanP = {tan ^s tan \{s - a) tan \{s - h) tan \{s - c) }*.

Example 2.—Assuming the earth to be a perfect sphere of 4000 miles radius, find

the area of a right-angled isosceles triangle drawn upon it whose equal sides are

each 100 miles long. {Ans. : 5058 square miles.)

Example 3.—The excess of the three angles of a triangle measured on the earth's

surface, above two right angles, is one second : what is its area, taking the

earth's diameter at 8000 miles ? {Ayis. : 11 'hi square miles.)



CHAPTER III

THE NUMERICAL SOLUTION OF THE RIGHT-ANGLED TRIANGLE

§ 31. The Various Cases and their Solution.—The solution oi

triangles in which one angle is a right angle acquires importance

from the fact, which will appear later, that a large part of the

numerical calculation of sides and angles

in any triangle depends essentially on

breaking it up into two right-angled

triangles.

The angle {G, say) being given equal

to a right angle, we need only two other

parts in order to be able to solve the

triangle. The different cases, with the

formulae which are required to furnish the unknown parts in

each case, are given in the following table :
—

Parts given.

I. Two sides a and h.

II. One side a and the hypotenuse c.

III. One side a and the opposite angle A.

Parts required.

cos c = cos a cos b

cot A = cot a sin b

cot B = cot & sin a

cos b = cos c/cos a
cos B = tan a cot c

sin A = sin a/sin c

sin c = sin a/sin A
sin b = tan a cot A
sin B = cos A/cos a

Case III. is known as the ambiguous case, from the fact that the

given data are compatible with two distinct relative configurations of the

angular points on the sphere. If one of these be ABC, the other may
be represented by A'BC, where A' is the antipodes of A.

26
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Parts given. ' Parts required.

TV. One side b and the adjaceiit angle A.

tan c = tan b/cos A
tan a = tan A sin b

cos B = cos b sin A
V. The hypotenuse c and one angle A.

VI. The two angles A and B.

tan b = tan c cos A
cot B = cos c tan A
sin ft = sin c sin A

cos c = cot A cot B
cos a = cos A/sin B
cos b = cos B/sin A

Example 1.—Given A = 80° 10' 30"-10, c= 110° 46' 20"*12, C = 90°, find a and b

(&<180°).

sin «= sin A sin c tan 6 = tan c cos A
L sine =9-9708 104,8 L tan c =0-4210 053, Iti

L sin A = 9-9935 833,1 L cos A = 9-2320 782,1

Lsina =9-9643 937,9 L tan & =9-6530 835, 2n

a= 67°6'52"'5(6) b^ -24° 13' 16"-96

= 155° 46' 43"-04.

Check : cos c= cos « cos b

Lcosa = 9-5898 259,0 Lsinc =9-9708 104,8

Lcos6 = 9-9599 791, 67z L tan c= 0-4210 053, l7i

9-5498 050,6% 9*5498 051, 7?i.

Example 2.—With the same data, sliow that B = 153° 58' 24" -98.

Example 3.—Given a= 49° 24' 10"'23, c= 69° 8' 45"-16, A = 90', find &<180°.

{Ans.: &= 22°33'25"-66.)

Example 4.—Given C = 90°, a = 50° 10' 11"-10, &= 210° 42' 15"-18, find A and B
(B>180°).

{Ans.: A = 113° 4' 5"-12

B = 217° i-y 53" -86.)

Example 5.—Given a= 23° 39' 17" '0, 6= 18° 51' 21" -0, C = 90°, find B.

{A71S.: B = 40°24' 14"-05.)

le 6.—Given A = 53° -22' 2-2"-35, a = 28° 21' 23"-0, C = 90°, show that one of

the values of B is 42° 41' l"-8.

Example 7.—Given A = 44° 50' 17" 7, c = 31° 42' 16"'4, = 90°, find a.
^

{Ans: a= 2r 45' l"-0.)

§ 32. Cases requiring Special Treatment.—If a part happens

to have a value near 7r/2 or 37r/2 and is to be determined by its

sine, or to be near 0° or tt and is to be determined by its cosine,

the tables we are using may not give it with sufficient accuracy.
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In such cases the difficulty can usually be got over by first

finding some other part which can be well determined and using

it with one of the given parts to determine the required part.

For example, in Case V. the formula sin a= sin c sin A gives a

poor determination of a if it is nearly 90°. We have, however,

h well determined by tan h = tan c cos A, after which a is given by
tan a — sin h tan A.

It may even happen in Cases II. and III. where all the un-

known parts are expressed as sines or cosines that none of them
can be well determined. It is then necessary to find expressions

for the half-angles, and these take the following form :

—

( tan J5 = + J[ tan J(c + a) tan J(c - a)

}

Case II. I tanJB= ± ^^{sin (c-a)/sin {c + a)]

( tan ^(A -I- 90) = ± v'jtan J(c -i- a)/tan |(c - a)
}

j
tan J(90 - c) = ± ^/{tan J(A - a)/tan J(A + a)}

Case III. ) tan J(90 -b)=± ^{sin (A - a)/sin (A + a)}

I tanJ(90-B)= ± ^/{tan J(A-a) tan J(A4-a)}. I
§ 33. Heegmann's Tables.—It is easily seen that any three

parts of a right-angled triangle are connected by one or other of

the formulae

sin z = sin x sin y
tan z = tan x sin y,

where x, y, z, are severally the parts themselves or their comple-

ments. Making use of this property, A. Heegmann constructed *

in 1849 two double-entry tables (one for each formula) for the

solution of all right-angled triangles. On entering with the

values of the two given parts (or their complements) in the

appropriate table, any required part is obtained by interpolation

to an accuracy of a tenth of a minute. These tables can also be

used for the solution of triangles which are not right-angled by
breaking them up into two right-angled ones.

* Mem. Soc, Sci., Lille, 1849, pp. 487-676.



CHAPTER IV

THE NUMERICAL SOLUTION OF THE GENERAL TRIANGLE

§ 34. Classification of Oases.—We now proceed to show how
the solution of any spherical triangle may be effected by the

numerical or computing methods when three of its six parts are

given. The graphical methods of solution will be considered in

a later chapter. The following are the cases to be considered :

—

Case I.—When no two of the given parts are consecutive.

(a) The three sides given.

(^) The three angles given.

Case II.—When two consecutive parts and a separated one are

given.

(a) Two sides and the angle opposite one of them.

(^) Two angles and the side opposite one of them.

Case III.—When three consecutive parts are given,

(a) Two sides and the included angle.

(/3) Two angles and the side between them.

We shall discuss these in order.

§ 35. Case 1(a). Three Sides given.—Taking first the sub-

case (a), we have a, h, c given ; and so at once by § 25

—

tan JA = , / I !Hii^^4^45^UV I Sin s sin (s - a) )

and similar formulge for B and C.

In navigation (finding the hour-angle) this formula is fre-

quently used in the form (§ 25)

. „ , . sin (s - h) sin (s - c)

sin b sin c

use is then made of tables of the logarithm of sin^ JA (the

haversine of A), which have been published with A as argument.
29
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As a check, if only one angle A has been calculated (or as an

alternative method of calculating A) we can use the equation

cos A = tan ~- tan h,

where is an auxiliary angle defined by the equation

, /I ^s, , a + h ^ a-b , , c
tan

(
Jc -0) = tan ~-~— tan -^ tan-

;

2 2 2

or the equivalent equation (§17)

cos (c - 9) cos b = cos 6 cos a, with tan 6 = cos A tan b.

The auxiliary here introduced is easily seen to represent the

intercept between A and the foot of the perpendicular from G on c.

When all three angles are required, it is best to begin by cal-

culating log m, where

111^ = sin (s - a) sin (s - b) sin (s — c) -^ sin s

,

so that

tan iA = -— -, etc.
sin (s - a) mtnis cas(One of Delambre's analogies (§29) may be employed in tnis case

as a check.

Example 1.—Given a= 70° 14' 20"-12, &= 49° 24' 10"-23, = 38° 46' 10"-34, to find

the angle A (less than 180°).

s= 79° 12' 20"-345

a= 70°14'20"-12 s-a= 8° 58' 0"-225

h= 49°24'10"-23 s-6= 29° 48' 10"-115

c= 38°46'10"-34 s-c= 40° 26' 10"-005

Check.

2s= 158° 24' 40"-69 158° 24' 40"-69

-Lsins = 0-0077533,4

-Lsin(s-a)= 0*8072628,2

L sin(s-&)= 9-6963708,0

L sin (s-c)= 9-8119767,9

20-3233637,5

LtaniA = 10-1616818,75

iA= 55° 25' 37"-42

.-. A = 110°51'14"'84

L tan 6 = 10-0670102.5

LcosA= 9 -5514376,171

L cos (c -

Lcosi

Ltan0 =

6 =
c-e =

-0) = 9-681O74O,3

= 9-8134052,4

9-4944792,7

9-6184478, 6?i

-22°33'25"-66

61° 19' 36"-00

L cos = 9-9654357,2

L cos a= 9 -5290434,

7

9-4944791,9



A = 69° 8' 45"-]4

B = 131° 3' 54"-93

C= - 38" 26' 47" -53

= 321° 33' 12"-47
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Example 2.—Find the angle B in the above triangle. {Ans. : 4S°_56' 5"*07.)

Example 3.—Given a^lQ" 14' 20"-12, 6 = 49° 24' 10"-23, c= 321° 13' 49"-66,

find all the angles if A is less than 180°.

s= 220° 26' 10" -005

a= 70° 14' 20"-12 s-a= 150° 11' 49"-885

&= 49° 24' 10" -23 s-h= 171° 1' 59"-775

c = 321° 13' 49"-66 s-c= -100° 47' 39" -655

2s = 440° 52' 20"'01 440° 52' 20" -01

L sin (s- a) = 9 -6963 708,2

L sin (s- 6) = 9-1927 372,0

L sin (s-c) = 9 -9922 466,4w

-Lsins =0-1880 231, 9?t

9-0693 778,5

logm =9-6346 889,25

- L sin (s- a) = 0-3036 291,8 Ltan4A= 9-8383 181,05
- L sin (s-&) = 0-8072 6-28,0 L tan ^B = 10 -3419 517,25

-L sin (s-c) = 0-0077 533,6/1 L tan iO= 9-5424 422,85w

iA= 34° 34' 22" -570

iB= 65° 31' 57"-464

10= -19° 13' 23"-764

Check.—Let us apply (§29)

sin ^(A + B) cos |c = + cos \{a - h) cos ^C.

i(A + B) = 100" 6' 20" -03 L sin i(A + B) = 9-9932 096,9

\c =160° 36' 54"-83 Lcos|c = 9-9746 548,7^

9-9678 645,6?i
a-& = 20° 50' 9"-89

^(a_&)^10° 25' 49"-945 L cos |(a-6) = 9-9927 807,2

Lcos^C =9-9750 837,1

9-9678 644,3

This shows good agreement : we notice that for this triangle the negative sign is

to be taken in the Delambre group (§ 29).

Example 4.— Given «= 37° 42' 42" '0, h and c each equal to 29° 54' 30"
"2, find A.

{Ans. : 80°48'28"-l.)

Example 5.—What does the triangle become when a= &= c=120° ?

§ 36. Case I(/5). Three Angles given.—The formulse when
the given parts are the three angles are precisely similar to

those of the preceding case : they are

1 / ( - cos S cos (S A)
I

'-i« = Vlcos-(S-B)cos(S-C)}''^"=-

with the check (if only one side a is required)

cos a = tan -i- tan B,
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where is defined by

cot (JC + 0) = tan —-— tan —-— tan -.
2 2 2

If all three sides are required, we first calculate

M2= -cosS-^{cos(S-A)cos(S-B)cos(S-C)},

when the sides are given by

tan Ja = M cos (S - A), etc.,

and employ any one of Delambre's Analogies as a check.

Example.—Given A = 109° 45'

find a and c.

»"-88, B = 130° 35' 49"-77, = 218° 46' 10"'34,

{Aois. : a= 110° 51' 14"-86, c= 218° 26' 47"-53.)

§ 37. Case 11(a). Two Sides and the Angle opposite one of

them given.—Case II. is distinguished as the ambiguous case. It

has already been remarked that when three parts of a triangle

are given there is always a certain ambiguity in determining the

remaining parts ; but in Cases I. and III. this does not correspond

to any real physical ambiguity as regards the relative position

of the three angular points of the triangle on the sphere, whereas

in Case II. (which corresponds to the " ambiguous case " of

Plane Trigonometry) there may be two physically different

configurations of the angular points on the sphere, each of which

satisfies the given conditions.

In Case Il.(a), suppose that a, c, A, are given. Then C can

be found from the equation

sin C = sin A sin c -^ sin a.

The angle B can be found from the formula

sin (B + ^) = sin 6 tan c cot a,

tan 6 = tan A cos c

where

(it is easily seen that is the complement of the angle between

c and the perpendicular from B onb); or, alternatively (if C has

been already found), B can be found from one of Napier's

Analogies

—

cotiB = ^-i^i^)tan^(A-C)= "^^t|^
+ ^)tani(A + C).

"^ sinj(rt-c) 2^ ' cos i{a-c) ^^ '

llie side b can be found either from the formula

sin (b + <j)) = cos a sin </> -^ cos c,
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where
cot cf> = tan c cos A

(it is easily seen that (p is the complement of the intercept

between A and the foot of the perpendicular from B on h), or else

(if C has been previously found) from one of Napier's Analogies

—

tan 16 = ^^"t|f
+ ^) tan l(a - c) = ^^SlM^l^^ tan i(a + c).

^ sm|(A-C) ^^ ^ cosJ(A-C) ^^

As a check when C alone is required we can use equation (2) or

(3) of § 14; if all the parts are required we can check by
Delambre's Analogies.

Example 1.—Given 6 = 49° 24' 10-23, c= 321° 13' 49"-66, B = 131° 3' 54'''96, to

findC(>270°).

Lsinc =97967 057,2w

L sin B= 9-8773 493,2

-Lsinft =0-1195 845,6

L sin = 9 -7936 396,071 C=-38° 26' 47' -53

= 321° 33' 12" •47

B + C= 92° 37' 7"-43 b + c= 370° 37' 59" •89

B-C = 169° 30' 42"-49 &-c=-27r 49' 39" •43

^(B + C)= 46° 18' 33"-72 i{b + c)= 185° 18' 59" -95

i(B-C)= 84° 45' 21" -25 ^(6-c)=-135° 54' 49" -72

Check.-

^(B - C) is nearer 90° or 0° than ^(B + C), therefore write

—

tan i(B - C)= tan ^(B + C) tan ^(& - c) cot i(6 + c)

Ltani(B + C) = 0-0198 565,3

Ltani(&-c) =9-9861 445,1

L cot ^{b + c) = 1-0312 353,2

L tan i(B-C) = 1-0372 363,6 MB-C)= 84° 45' 21"-231

B-C = 169° 30' 42"'46

C = 321° 33' l-2"-50

so that the value of C is increased by 0"-03.

Example 2.— If a= 29° 54' 30"-2, c= 36° 17' 10"-0, A= 42° 41' l"-8, show that

the two possible values of b giving rise to distinct triangles are 47° 12' 44" '0

and 9° 30' 2"
-0.

§ 38. Case II(^). Two Angles and the Side opposite one

of them given.—This case so much resembles the last that it

will not be necessary to do more than set down the formulae.

Suppose A, C, a, are given. Then c is found from

sin G= sin a sin C -r sin A,

and b either from

tan = tan a cos C
sin (b -0) = cot A tan C sin
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or from

tan ib = '^'^f^ tan J(a - c) = '^^4^^^, tan ^a + c)

;

^ smJ(A-C) ^^ - cosJ(A-C) ^^ ^

while B is found either from

j
cot <fi

= cos a tan C

( sin (B - <^) = cos A sin <^ -r cos C,

or from

cot iB =!i^+5) tan HA - C) =
cos|(a + c)

^^^ ^ ^ (.
^

sin J(a-c) ^^ cos^(a-c) ''^
^

Example 1.—Given a= 321° 13' 49" 66, = 131° 3' 54"-96, A = 321° 33' 12"-48,

find a value for b less than 90"*.

Ltana= 9-9047 943, 4?^

LcosC^ 9-8175 113,37i

Ltan0= 9-7223 056,7 = 27° 48' 58"-23

-LtanA= 0-1002 268,ln

Lsin0= 9-6689 785,6

L tan C = 10-0598 379,5?t

L sin (&-0)= 9*8290 433,2 .-. 6-0= 42° 25' 21"-85

the supplement is excluded.

.;. &= 70° 14' 20" -08.

Check.—Apply the equation sin (c + A) tan (^6 -G) = sin (c - A) tan ^b.

C + A = 452° 37' 7"-44 &- 20 = 14° 36' 23"-62

C-A = 190° 29' 17"-52 i(6-20)= 7° 18' 11"-81

^6= 35' 7' 10"-04

{Check) 9= 27° 48' 58"-23

L sin (C + A) = 9 -9995 462,1 LtanP= 9-8471 524,5

Ltan^(&-2g) = 9-1077 563,8 L sin (C- A) = 9 -2601 502,0

9-1073 026,9 9-1073 026,5.

Example 2.—Given a= 130° 13' 49"-9, A = 150° 5' 29"-8, C=148° 17' 43"-6,

show that one of the two possible values of B which give distinct triangles is

139° 23' 38"-0, and find the other.

§ 39. Case Ill(a). Two Sides and the Included Angle
given.—Taking next the case when two sides and the included

angle—say a, h, C—are given, we can proceed by introducing

an auxiliary angle 6, equal to the intercept between C and the

foot of the perpendicular from 5 on 6 ; is to be found from

the equation
tan = tan a cos C . . . • ( 1

)

and c and A are then given immediately by

cos c = cos a cos (6 - ^) -^ cos ^ . . • (2)

tan A = sin ^ tan C -^ sin (^> - ^) . . . (3)
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while B is finally derived from

sin B = sin C sin h -^ sin c = sin A sin h -^ sin a.

A second method (though not essentially distinct in theory)

is to introduce in place of 6 an auxiliary <p equal to the intercept

between C and the foot of the perpendicular from A on a: (p is

found from
tan cfi = tan b cos C,

and c and B are then given immediately by

cos c — COS h cos (a — cf>)^ cos ^
tan B = sin <fi tan C-^ sin (a — <^),

and A is derived from the sine formula.

A third method is to derive A and B first by Napier's

Analogies

—

tan J(A + B) = cos J(a - b) cot JC -r cos ^{a + b),

tan ^(A - B) = sin J(a - 5) cot JC -^ sin J(a + b),

and then find c from the sine formula.

If only one of the unknown parts is required, we naturally

choose that method which gives the part in question most

directly.

Example 1 {illustrating the first method).—
Given a = 49° 24' 10"-23, C = 69° 8' 45"-16, 6= 321° 13' 49"-66, to find A<180°.

Ltana = 10'0670 102,5

LcosC= 9-5514 376,1

Ltan0= 9-6184 478,6 6= 22° 33' 25"-66

&- = 298° 40' 24"'00

-L sin (6-0)= 0-0568 174,2u

Lsin0= 9-5838 836,2

LtanC= 0-4191 369,7

Ltan A = 0-0598 380,lw A= - 48° 56' 5"-06

= 131° 3' 54"-94.

As a check we can use the equation sin (C + A) tan
(J& -6) = sin (C - A) tan hb.

C + A= 200' 12' 40"-10 b -26= 276° 6' 58"-34

C-A=-61*55' 9"-78 |(6-20) = 138° 3' 29"-17

16 = 160° 36' 54" -83

(Check) e= 22° 33' 25" '66

Lsin(C + A)= 9'5384 237,5^1 L tan ^6 = 9-5463 660,3n

L tan i(& - 20)= 9-9535 516,9?i L sin (C - A) = 9-9456 09i,87i

9-4919 754,4 9-4919 755,1

Example 2.—Given a= 43° 30' 2"-0, b= BV 42' 16"'4, C = 49° 46' 10"-1, find A.

(Ans.: 89° 40' 35"-4.)



a + b= 370° 37' 59" •89

a-b=--271° 49' 39"'•43

iC = 34° 34' 22" •58
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Exavriple 3 {illustrating the third method).—
Given « = 49° 24' 10"^23, 6 = 321° 13' 49"'66, C = 69° 8' 45" "16, find A and B

if c be less than 180°.

!(« + &)= 185° 18' 59"-945

^(a_&)=-135° 54' 49"-7l5

a= 49° 24' 10"-23

b= 321° 13' 49"-66

Lcosi(a-&) = 9-8563 022,471 Lsini(a-&) = 9-8424 467,9?i

-Lcos^(a + 6) = 0-0018 724,7?t -Lsin^(a + &) = 1-0331079,771

-Ltan^C = 0-1616 818,4 -LtanJC =: 0-1 616 818,4

Ltani(A + B) = lO-0198 565,5 L tan K^- B)= ll-0372 366,0

KA + B)= 46° 18' 33"-72 A= 131° 3' 54"-96

i(A-B)= 84° 45' 21"-24 B= - 38° 26' 47"'52

The equation sin c sin B = sin C sin b tells us, since sin c is positive, that sin B is

negative, so that we do not need to add 180° to these results. We therefore write—

B==321°33' 12"-48.

Check.—Applying equation (2).

Ltan^(A + B) = 10-0198 565,5 L tan |(A-B) = ll-0372 366,0

Ltani(a-&) = 9-9861 445,5 Ltan|(a + &) = 8-9687 645,0

0-0060 011,0 0-0060 011,0

j^ 40. Case III(|8). Two Angles and the Side between them

given.—This case is precisely similar to the last. If c, A, B, are

given, we can define an auxiliary by the equation

tan = cos c tan A,

and then calculate a and C from

tan a = tan c sin ^ -T- sin (B + ^)

cos C= cos A cos (B + ^) -^ cos Oy

and b from the sine formula. Or we can define an auxiliary

by the equation
tan = cos c tan B,

and then calculate h and C from

tan h= tan c sin </> -^ sin (A + <fi)

cos C = cos B cos (A + ^) -^ cos <^

and a from the sine formula. Or, lastly, we can derive a and b

first from
tan ^{a + h) = cos J(A - B) tan J c -^ cos J(A + B)

tan J(a - b) = sin ^(A - B) tan J c-r sin J(A + B),

and then find C from the sine formula.

Example.—Given c= 3Q° 17' 10"-0, A= 106° 44' 44"-7, B= 42° 41' l"-8, find a,

{Ans.: 56° 42' 46"-0.)
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§ 41. Solution by Right-angled Triangles.—A triangle

which is not right-angled can always be solved by dividing it

into two right-angled triangles. For suppose, first, that among
the three given parts there are two which are consecutive. We
can without loss of generality take these to be a and C. Draw
a perpendicular BD to the side a (fig. 7). Then the knowledge

of a and C enables us to

solve completely the right-

angled triangle BCD ; and

then, knowing BD and the

third given part, which must

furnish some other datum re-

lative to the triangle ABD,
we can solve the latter right-

angled triangle, and so com-

plete the solution of the

original triangle. If of the

three given parts no two are consecutive, the three given parts

must be either the three sides or the three angles. Supposing,

first, that the three sides a, h, c are given, we have from fig. 7

—

cos {b - x)

cos c

Hence

or

cos p cos a

cos {h-x)- cos X_ cos c - cos a

cos (6— ic)-F-cos ic cosc-Hcosa

tan {x - ^b) = tan h{a - c) tan \{a + c) cot J6.

This equation determines x, and therefore {h— x): the values of

A and C are then given by

cos A = tan (6 - x) cot c

cos C = tan X cot a,

and B can be obtained from the sine formula.

Similarly when the three angles are given, we can determine

the angle CBD in terms of them, and hence, by solving the right-

angled triangles BCD and BAD, obtain a, b, and c.

Example 1.—If a = 97° 26' 29"'0, C-95° 38' 4"-5, A = 82» 33' 31"-0, tind b.

(& = 115° 36'44"-8.)

Example 2.—If « and h are as above, and c= 99° 40' 48"'5, find B.

(B = 114° 26'49"-8.)



CHAPTEE V

SPECIAL APPLICATIONS

§ 42. Introductory.—The most frequent use of spherical trigono-

metry is in problems connected with astronomy and navigation.

In the former a high degree of accuracy is generally demanded

;

but in the latter less accuracy is required, and we may some-

times make use of one or other of the graphical processes to

be described in the next chapter. We now proceed to mention

a few frequently recurring types of problems; the reader

referred to technical works for complete detail.

is

§ 43. Great Circle Sailing.—It is easily seen that the

shortest distance between two points on a sphere is along the

great circle joining them ; so that,

other things being equal, a ship

should endeavour to follow this

circle from port to port, and it

becomes a practical problem to

determine the direction to pursue

at any part of the course.

Let the ship's present position

S be latitude <p^ and longitude l-^^,

and let the corresponding values

for the destination D be (<p2'h)'

Then in the triangle F8D (fig. 8), where P is the north pole,

the sides PS and PD are respectively 90° -^^ and 90°— 9!)2,

and the contained angle is the difference of longitude l^^^l^.

The angle at *S^ gives the direction measured from the north, and,

proceeding as in § 39 with the four consecutive parts 90°-
(p.^,

l^^l^, 90°— 01, S, we have by equation (3)

tan aS = sin ^ tan (/j^^^ "^ ^^^^ i^^" ~ *^i
" ^)

sin tan (l-^/^'lo)

Fig.

i.e. tau*S =
cos (<^^ -I- 0)
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where by (1)

tan (9 = tan (90° - (^2) cos (li^^L) = cos {l^r^l^)/tsLn cf>^.

The distance SD, if required, is given by (2)

cos SD cos ^= cos (90° -cf>i-0) cos (90° - (^2)

= sin
i(f>i^ + 0) sin ^g*

The latitudes used above have been measured from the equator

northwards. If south latitude is given, we must of course change
the sign of the corresponding (p in the above expressions.

Example.—Find the initial course to be steered (and the distance) by a ship

sailing from Strait of Belle Isle (say 52° N. and 55° W.) for Land's End
(50° N. and 6° W.).

logcos(Zi^'^?2) = logcos49°= 9'8169

logtan</>2 = log tan 50°= '0762

log tan e

log sin = 9-6721

log tan 49°= 0-0608

= 9-7407 = 28° 2'

01 + = 80° 2'

log cos (01 + ^) = 9 -2382

9-7329

1-2382

logtanAS'= -4947

log sin 02= 9 •8843

log sin (01 + 0) = 9 -9934

.S'=72° 15'

{i.e. the course to be steered i

irr North of East.)

9-8777

log cos 0=9-9458

logcos;SfZ>= 9-9319 SD = 31°16'= 1876' = :1876 miles

(l' = l nautical mile).

1. Find the point at which the ship, if it follows the great circle, will be sailing

due east. (54° N. : 33° 54' W.)
2. Find the distance from the same point of departure to a point due east {i.e. in

the same latitude) and 12° W. (1564 miles.)

3. Find the distance in question 2 if the ship sailed due east, keeping a constant

course. (1588 miles.)

§ 44. Finding the Longitude at Sea.—Let a ship's position

at time t-^, as indicated by a chronometer giving Greenwich time,

be latitude measured positively northwards from the equator,

and longitude I measured west from the Greenwich meridian.

Let the sun's altitude above the horizon be a at the same time.

Then in the triangle ZPS (fig. 9), where P is the north pole, Z is

the zenith, and S the position of the sun, we have SZ= (90° — a),

and SP = (90° -S), where S is the declination north of the celestial
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equator and ZP is the angle between the lines joining the centre

of the earth to the Pole, and to the place in question, i.e.

ZP= (90° — (j)). The altitudie a is read by means of a sextant,

S is given by the Nautical AlTnanhc for small intervals of time

throughout the year, and (p is determined as follows. At mid-

day the sailor observes the sun's greatest altitude a, whence,

since the triangle has then closed up so that the angle at P
IS zero,

S'P==S'Z+ZP, 90° - 8' = 90° -a+ 90° - <^', fl
which gives (p\ Now, knowing the ship's component velocity

northwards, we easily find

the change of latitude be-

tween the times of observa-

p tion and thus determine (p.

Three sides of the triangle

are now known, and the

angle h at P (or the hour-

angle, as it is called) can be

calculated.

As mentioned in § 35,

the sine of the half-angle is

usually used, and, inserting

the expressions for the sides in formula (9), we easily obtain

8-<^)

Fig. 9.

gin2 U _,
si^ K9Q° + « + 8 + <^) sin 1(90° + a

cos 8 cos <^

which determines h.

Multiplying ^^ by 15 to convert it into degrees of longitude,

we have the distance in longitude that Greenwich was eastward

of the sun's meridian {i.e. of the meridian PS) at the time of

observation. Adding h (or subtracting if the observation was
taken after local noon) we have the ship's longitude west of

Greenwich as required, i.e. l = 15t^-\-h.

The time t^ should be chosen when the sun's altitude is

changing rapidly in order to make as small as possible the

error in determining the time t^ at which the sun reached the

altitude a.

Example 1.—In'latitude 43°, the sun's declination being 16° N., the altitude of

the sun's centre is (all reductions having been made) 23°. Find the hour-

angle. {A71S. : 4^1 fi2n^ 57\)
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Example 2.—In latitude 36°, the sun's declination being 13° N., the altitude of

the sun's centre is 10°, Find the hour-angle. {Avs. : 5^^ 47"^ 57^)

Example 3.—In latitude 45° 25' 30", the sun's declination being 23° 28' 30" N.,

the altitude is 2° 25' 30". Find the hour-angle. {Ans. : 7^ 28™ 14s.

)

§ 45. Reducing an Angle to the Horizon.—In survey work
we are sometimes given the altitudes a^ and a^ of two objects A
and B as seen from a station 0, together witli the angle they

subtend at 0, while we require to insert their positions among
others on a chart which can only give their projections. It is

therefore necessary to calculate the 2
angle which the line joining the

projections of and A makes with

the line joining the projections of

and B.

Through the points A and B
draw a sphere (fig. 10) having

as centre, and join the zenith Z to

the points A and B by two great

circles meeting the horizontal plane

throuo^h in A', B\ Then, since

the vertical lines through A and

B meet the lines OA' and OB' re-

spectively, the required angle is

A'OB\ i.e. the angle Z of the tri-

angle ZAB. The three sides of this triangle are given for

ZA = ^0° — a^, ZB = 90° — a^, and AB is the observed angle sub-

tended by A^ and B. We can therefore obtain the required value

by the formula (10) for tan | Z. In this case, however, the

quantities a^ and a^ are usually small, so that we can use an

approximation. Let the angle AOB be X, and let the angle

at Z be X+ x so that x is small, then by the cosine formula

we have

—

/ TT \ cosX -cos^Zcos 5Z
cos(jr-i-a;) =

Fig. 10.

i.e. cos X

sin AZsiii BZ

y COS X - sin ttj sin a.^

cos aj COS ttg

cos X — d-i a^

i-i«-fO
(if we stop at squares of a^ and a^.
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This can be written

X sin Z= a^aj - J(«i^ + «2") ^°^ ^»

x= i{a^ + a^y tan JZ- l(a^ - a^f cot JX 13 denote 1§ 46. Conversion of Star Coordinates.—Astronomers

the position of a celestial body by one of two systems of co-

ordinates, each being exactly similar to the system described in

§ 6. Both systems have the earth's centre (fig. 11) as the

centre of the sphere of reference, but while one has for pole P,

the direction of the earth's axis, and a corresponding equator

Fig. 11.

T a=2=, the other has its pole at a well-defined point K about 23°

distant from P with a corresponding equator ^\if^ called the

ecliptic. If we draw meridians Per and Kcr through the star's

position (T, then plainly the star's position can be given either in

terms of a {right ascension) and S {declination), defined as in

the figure, or it can be given in terms of X (longitiide) and /3

(latitude). Now, it is a frequently recurring problem to change

from the one set of coordinates to the other, and this can be done

directly by means of the triangle PKc, for it involves all the co-

ordinates a, ^, S, X, and three of its parts are always given.

Further, by the nature of the problem neither 6 nor ^ can exceed

dz90°, so that the solution of the triangle is unique (§ 11).

Problem I.—Given the right ascension a of a star and its

declination S, to find its longitude X and its latitude ^.
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We have two sides and the included angle of the triangle

PK(T given, and require the next two in order. Therefore, by

§ 39, writing

tan 6 = tan (90° - 8) cos (90° + a) = - sin a cot 8,

we have, by equation (2)

—

cos (90' - /3) = cos (e - 0) cos (90° - 8) -^ cos 6

*.e. sin /5 = cos (e - 6) sin 8/cos 6 . . • (1)

which determines ^ uniquely, since it must be in the first

or fourth quadrant.

To determine X we use equation (3) and the Sine Formula,

one for the calculation and the other as a quadrant check.

sin (e - 0) tan (90° - X) = sin 6 tan (90° + a)

and sin (90° - fS) sin (90° - A) = sin (90° + a) sin (90° - 8)

or tan A = tan a sin (0 - €)/sin 6 ... (2)

cos X = cos a cos 8/cos /3 .... (3)

By calculating X from both (2) and (3) we have a partial check

on our working.

Using (1) and (3) we obtain a value for tan (3—the tangent

giving more accurate values than the sine or cosine—and arrange

the formulae thus
tan 0= - sin a/tan 8

, . sin (0 - e) tan a
tan A = ^^

—

:—

V

tan P =

sm
sin X.

w
tan (e - 0)

determining the quadrant of X by (3)

cos f3 cos A = cos a cos 8.

If either X or a be very small, the second or third of equa-

tions (4) may turn out to be the ratio of small quantities. To

avoid this computers introduce a second auxiliary tyi, so that the

equations become

m sin e = sin (90° - 8) cos (90° + a) = sin (- a) cos 8 . (5)

m cos ^ = cos (90° -8) =sin8 . . . (6)

sin /3 = m cos (€ - 0) (7)

sin A cos y8 = m sin (c - ^) (8)

eos A cos /5 = cos a cos 8 (9)
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Tan is determined by subtracting the logs of (5) and (6) ; and
then, looking up log sin or log cos (whichever is numerically

the greater), we have log m from (5) and (6).*

Tan X is obtained by subtracting the logs of (8) and (9), and
from log sin X or log cos X (whichever is the greater) and (8) or

(9) we determine cos /3. Sin /3 is given by (7) and, subtracting

from it the value of cos /3, we determine /5 by its tangent.

Entering the tables with whichever is the smaller, sin /3 or cos ^,

we determine a second value for
fi,

the possession of the two
determinations serving as a partial check on the working.

Check Equations.—Applying the two Napier analogies to the

five parts 90° -S, 90° + a, e, 90" -X, 90° -/3, we easily obtain from

(18) and (19)—

sin J(X - a) = tan Jc cos J(X + a) tan J( + (3)

tan J(S - fS) = tan Je sin J(X + a) sec J(X - a).

Since the differences J(X — a) and ^(S — /3) are usually small,

the right-hand side of these equations is less affected by errors

in X and ^ than the left-hand sides ; we therefore obtain a closer

approximation by substituting the values already obtained in

the right-hand sides and then recalculating X-a and S — /3,

accepting the resulting values as final. They will be better

values than the preceding ones on account of the avoidance of

the auxiliary angle.

As an example of the actual calculation let us convert the coordinates of y Pegasi

(1911).

o = 2° 10' 5"-10, 5=14° 41' 24"-l7, e= 23° 27' 3"-ll

cos A cos j3= 9 -9852 555 sin 8= 9-3386 170

cosa = 9-9996 890 cos (€-0) = 9 -9300 095

cos 5 = 9-9855 665 m= 9-4086 075

sin(-o)= 8-5778 497n sin(6-0) = 9-72OO863

m sin = 8 '5634 162h sin A cos 8 = 9 •1286 938

sin 5=m cos = 9-4041 320 cos \ cos )8 = 9 -9852 555

tan = 9-1592 842^1 tan\= 9-1434 383

e= - 8" 12' 41" •17 A = 7°56'15"-71

6-0= 81° 39' 44" •28 sine or cos \ = 9 -9958 365

sine or cos = 9-9955 245 cos)8 = 9-9894 190

tan /8 = 9-3491 980

i8=12°35'46"-76
Check (by siniS) i3= 12°35'46"-75

See § 3.
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ication of Check equations.

—

S = 14° 41' 24"-17 \= r 55' 15"-71

)8 = 12° 35' 46"-76 o= 2° 10' 5"-10

5 + )8=:27° 17' 10" -93 \ + a=:10° 5' 20"-81

S-)8= 2° 5' 37" "41 X-a= 5° 45' 10"-61

i(5 + )8) = 13° 38' 35"'47 l{K + a)= 5° 2' 40" -42

i(5-)3)= 1° 2' 48"-71 i(\-a)= 2° 52' 35" -31

ie = ir 43' 31"-56

siiii(A + a) = 8-9441 394,9 cos i(A + a)= 9 -9983 145,5

-cosi(A-a)= 0-0005 475,3 tani(5 + )8) = 9-3851 116,7

tan ^6 = 9-3171 289,9 tan ^€ = 9-3171 289,9

tani(5-)3) = 8-2618 160,1 sin i(A-o) = 8-7005 552,1

4(5-^)= 1° 2' 48"711 ^(A-a) = 2'' 52' 35"-301

5-)8= 2° 5' 37"'42 A-a= 5° 45' 10"-60

;8 = 12° 35' 46" -75 A= 7° 55' 15"-70

111 the check equations the utmost accuracy of the tables is made use of, as we
depend on this stage of the calculation for the final values of A and j8.

§ 47. Problem 2.—Given the longitude \ of a star and its

latitude (3, to find its right ascension a and its declination S.

Referring again to the triangle PKa (fig. 11), we see that

again we are given two sides and the included angle. We there-

fore write
tan ^ = tan (90° -

f3) cos (90° - X) = sin k cot ft

and proceed as before.

We may, however, evidently interchange in the triangle /3

and 0, and also — X and a. In this way equations (4) become

tan = sin A/tan ^
. sin (6 - e) tan A
tan a = ^^—.—4^

tan 8 =

sm tf

sin a

tan (0 - e)

To avoid difficulties when a and X are small, recourse is usually

had to the extended form involving ni : the equations become

m sin = sin A cos (3

m cos 6/ = sin /?

sin h = m cos (6 - e)

sin a cos c = 111 sin (6 - c)

cos a cos 6 = cos A cos (3,

where the same procedure in solving is adopted as in last section.
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Example,—Given* \= 2SS° 54' 51"-36, B= 6V 44' 16"-79, e = 23° 27' 8"-26, to

calculate a and 5.

cos a cos S= 9-0563 842

cos A = 9-3810 604

cos)8 = 9-6753 238

sinA = 9-9870 656/i

m sin = 9-6623 894?i

sin )8=w cos = 9 '9448 732

tan = 97175 162n

d= -27° 33' 22"-35

a-€= -51° 0' 30"-61

sine or cos = 9-9477 069

sin 5 = 9-7959 585

cos(0-e) = 9-7987 922

m= 9-997i 663

sin (0-6) = 9-8905 547?i

sin o cos 5= 9-8877 210?i

cos o cos S = 9-0563 842

tan a = 0-8313 368

a= - 81° 36' 42"-57

= 278° 23' 17" -43

sine or cos a = 9 -9753 291?i

cos 5 = 9-8923 919

tan 5 = 9-9035 666

5 = 38° 41' 25"-74

Check (by sin 5) 5= 38° 41' 25"-72

On applying the same check as in the preceding example, we shall decide finally

the values of a and 5 to accept. The procedure is identical with that of the last

section.

Examples.—Using the two auxiliaries (w, 0) defined by msin = sin acosC,

m cos 0=cos a, find A and c in the following cases

—

(1) a= 64°23' 15"-2, C= 97°26' 29"-0, & = 99° 40' 48"-5, A being less than 180*.

(A= 65° 33' 10"-2, c= 100° 49' 30"-l.)

(2) a= 95° 38' 4"-5, C=115° 36' 44"-8, &= 97° 26' 29"-0 (A<180°).

(A = 99° 40' 48"-5, c = 114° 26' 49"-8.)

(3) a= 17° 10' 47"-3, C = 150° 25' 14"-6, &= 165° 4' 22" '7 (A>180°).

(A= 270° 30' 7"-9, c= 188° 22' 19"-1.)

(4) a = 55° 42' 57"-9, c= 249° 2' 7"'0, & = 144° 28' 21"-3 (A<90°).

(A = 55° 42' 57"-9, c= 223° 8' 17" '2.)

* a Lyra? 1900.



CHAPTER VI

GRAPHICAL METHODS OF SOLUTION

§ 48. Introductory.—In plane trigonometry a triangle can be

solved (at least roughly) by drawing its sides and angles to

scale and simply measuring off the required quantities. In

spherical trigonometry it is impossible to do this directly on a

plane diagram ; various graphical methods of solution have,

however, been invented and used. They are inferior, as regards

accuracy, to the numerical methods described above ; but they

are sufficiently accurate for many purposes, and some of them
are highly ingenious and interesting. We may roughly divide

these methods into two main classes, Constructive and Norao-

graphical. In the former the solution is obtained hy means of

a geometrical construction for each separate case ; in the latter

a more or less elaborate system of graduated lines and families

of curves is drawn once for all, to serve for all possible triangles,

and the solution is obtained by inspection of this diagram (with,

in some cases, the relative motion of parts of a mechanism).

We shall consider first the constructive methods.

§ 49. Monge's Method.*—Imagine the trihedral angle OABC
of § 1 constructed of cardboard and situated with the face OBG
in the horizontal plane. Through some point P on the upper

edge OA draw a plane through the figure- to cut OG perpendicu-

larly in F ; and through the same point P draw another plane

to cut OB perpendicularly in F\ The two cutting planes will

intersect each other in a vertical line through P meeting the

horizontal plane in some point D, and we can close up the

intersected end of the trihedral angle by means of two right-

angled triangles PDF and PDF'. If now this closed surface be

unfolded by rotating the enclosing triangular faces which are

not horizontal about their bases into the horizontal plane, we
* Gaspard Monge (1746-1818) was Professor at the Ecole polytechnique in Paris.

47
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shall have four lines 0A'\ OB, 00, OA' radiating from (fig. 12)

and containing angles equal to the angles between the lines

OA, OB, 00 in the erect position. The point P on the plane

POO will occupy a position D\ such that DFD' is a straight line

since it must always lie in the plane cutting 00 at right angles.

Similarl}^ we have the straight line DF'D" for the face FOB.
The right-angled triangle PBF will occupy a position GDF such

that GDF is a right angle and GF=D'F.

Fia. 12.

We are thus led to the following constructions for solving a

triangle graphically according to the parts given :

—

(a) Given a, h, c, to find A or 0.—From a point (fig. 12)

draw four lines OA", OB, 00, OA' containing the angles a = ^"05,
b = BOC, c = COA\ Cut oif OD"=OD' from OA" and 0A\ and
draw through D" and D' perpendiculars to OB and 00 intersect-

ing in D. Draw BG perpendicular to D'D and make FG equal

to FD\ Then DFG gives the angle A.

This can be easily verified analytically ; for, writing r = OD,
r' = OB" = OD', = angle DOF, we have

Similarly

or, expanding,

r cos = OF= r cos c.

r cos il) -0) = r' cos a,

r sin b smO = r cos a-r cos h cos d

= r cos a-T cos h cos c.
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wliich, by the given formula,

= r sill h sill c cos A
;

.'. ?-siii^ = ?*'sin ccos A,

i.e. DF= D'F cos A = FG cos A
.-. angle DFG = the angle A.

Similarly, by drawing a triangle on DF' with hypotenuse = D"F',

we can construct the angle C.

(6) Given h, c, and A, to find a.—Use the same construction

in different order. Draw OB, OG, OA' as before, and at any
point F in OG draw FD' perpendicular to OG. Construct the

triangle DFG having angle DFG = ^ngU A, FG= FD' and FDG
a right angle. This determines D. Draw BF'iy perpendicular

to OB such that 0T>" = OD', then D"OB is the required side a.

The analytical proof is as before.

(c) Given the three sides, to find only one angle B.—The
above construction enables us to iSnd two of the an2:les at once,

Fig. 13.

A and C. If now with the same lines OA", OB, OC, OA' laid

down, we wish to find the remaining angle A we may use the

following construction which is also slightly shorter than the

one given above, if, as is often the case, we require to find only

one angle.

Through D" and D' (fig. 13) draw perpendiculars cutting OB,

00, in M and JSf respectively. Construct the triangle MPN
such that MP=MB" and NP = ND'\ then the angle at P is

the required angle B.
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For

COS P = {MP'- + NF^ - lfiV2) - 2MP . PN
= [MD"^ + ND'^ - (OM^ + ON'" - 20M. ON cos b)} ^ 2MD".NU
= (20M. ON cos b - OD'"^ - OD''^) ^20M sin a . ON sin c

= cos &/(sin a sin c) - OU'^jOM . ON . sin a sin c

cos& = OZ)". Oi)'
+ sin a sin c cos P

OM,ON
cos a cos c + sin a sin c cos P,

showing that P is equal to the angle B.

The construction is obviously derived from the consideration

that the figure OU'MPNUO can be folded about the lines DM,
MN, NO so as to form the trihedral angle already discussed.

It will be noticed that the above constructions are for the

case (3.1) only.

Example 1.—Given a= 56" 40', 6 = 83° 13', 0=114° 30', find the angles by

Monge's construction. {Ans. : A = 48° 31', B = 62° 56', C = 125° 19'.

)

Example 2.-Given a= 83° 12', & = 56° 40', = 125° 20', find A and B by

graphical construction. {Ans. : A = 62° 54', B = 48° 30'.)

§ 50. The Emerson-Langley Construction.—We shall next

describe a second method for solving graphically the equation

cos a = COS 6 cos c + sinb sin c cos A,

which is due to W. Emerson (1701-1782) and E. M. Langley.*

Draw a circle XPX'R of

unit radius (fig. 14) about

the origin. Graduate its cir-

cumference to read degrees,

minutes, etc., and let the

angles XOP, YOx' and X'OR
be equal to 6, c, and A re-

spectively. Through x' draw

x'O'x parallel to the cc-axis and

cut off 0T= O'x. Draw TLm
parallel to the y-axis meeting

x'x in 771. Through m drawo

TfiP' parallel to OP. Then P'OP read off on the circumference

is the complement of the side a.

* Cf. Langley, The Grapliic Treatment of some Astronomical Problems, London

(1908). It may here be mentioned that Mr Langley has devised many interesting,

cardboard models representing the solution of spherical triangles.

Fig. 14.
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We have

Also

But

OT=0'x = s,mc

OL = OT cos A = sin c cos A.

OL = OM- ML = ON cosec & - cos c cot h

0N= cos c cos h + sin c cos A sin h

= cos a by formula given.

ON= sin P'OP .-. a = 90° -P'OP
or P'P= 90° -a, as stated.

This construction, therefore, gives us the remaining side

when two sides and the contained angle are given.

It is obvious that the same construction gives us the ano-le

A when the three sides are given, for the values of a, b, c

determine the points P, P\ x\ and therefore the point 77i and
the length 0T= O'x are given so that the angle A is readily

constructed.

Again, if one of the containing sides (6) be required, the

values of c and A determine in succession the line x'x, the point

T, and the point Wj. If now a parallel linkage * having one arm
pivoted at be adjusted until the other passes through m, and
the intercept FF' on the circumference equals 90° — a, then h is

given by the arc FX.
We can construct the angle C at the same time as follows :

—

Through m draw iniQ perpendicular to iinF' so that OQ = NF' =
sin a. Then

P(3a = angle C.

For cos FOQ = cos (90° + Q) = - sin Q = -^ = i;^. NowOQ sm a
rriN is the projection of tyiL and LO where mZ = cos c, and LO,

by above, = cos a cosec h— cos c cot h.

. '. mN = - mL sin b + LO cos b

= - cos c sin b + cos a cot b — cos c cot b cos b

= cos a cot 6 - cos c/sin b

nA^ - tnN cos a cos b — cos c , ..

.'. cos FOQ= ^=
:

: =COSC.
sm a sin a sin b

* The writer is not aware that this additional mechanism was contemplated by

the authors.



52 THE SOLUTION OF SPHERICAL TRIANGLES [CH. VI

Ki'ample 1. —Prove thefollowing const7'uctive solution for a splierical triangle vj/iose

three sides are given :
—

Let the sides a, b, c, be given, and let C be the part required. Describe a circle,

and take any point Y on it. Mark off on the circumference from Y, on the same side

of Y, arcs YS, YT, respectively equal to the sides a and b, and on the other side of

Y mark off an arc YM equal to a. From T mark off on each side arcs TN, TQ,

each equal to c. Draw the chords SM and QN, meeting in P. Bisect SM at D, and

with D as centre and DM as radius draw a circle MRS. Draw a perpendicular PR
to MPS at P, meeting this circle in R. Draw the radius DR. Then the angle

SDR will be equal to the required angle C.

[Imagine the semicircle SRM rotated about the line SM as a hinge, until its

plane is perpendicular to the plane of the paper. Let R' be the new jwsition of R.

Then if we consider the sphere of which the circle MYSTQN is a «,'reat circle, the

points R', Y, T, are on the surface of this sphere, and the arcs R'Y, YT, TR' are

respectively equal to the given sides a, b, c so that R'YT is equal to the spherical

triangle in question. The construction is then deduced without diflBculty.]

Example 2.

—

Prove that with the construction of Exavip)le 1 the angle A can be

obtained in the following ivay

:

—
With centre R and radius equal to iNQ describe a circle meeting Sj\I in E.

Join RE. Then the angle DER, is equal to the required angle A.

Example 3.—Prove that in the construction of Example 1, PD = sin a cos C.

Example 4.— If a= 62° 40', 6 = 119° 0', c = 79° 10', find the angles by any of the

above graphical constructions. {Ans.: A = 50° 10', B = 130° 50', = 58° C.)

§ 51. Nomograms : Definition.—We now proceed to describe

the nomographic methods. As stated above (§ 48), a nomogram,

in contradistinction to the constructive methods just described,

consists essentially of a table of values of a function re-

presented on one or more comparatively elaborate diagrams.

When once drawn they give in general more accurate solutions

than can be obtained by direct construction. A simple example

in which only one diagram is required is the daily weather

chart, which enables us to read off directly the temperature and

atmospheric pressure at any locality.

The following three methods (§§ 52-55) involve two diagrams,

one of them being transparent and sliding over the other, and

are derived from consideration of the projection of a triangle

drawn on a sphere.

§ 52. Spherical Networks.—Let us describe on a sphere the

network of parallels of latitude and great circles of longitude

of § 5, fig. 1, having N as one of its poles, and imagine a trans-

parent spherical shell closely fitting over this and covered with

an exactly similar network, Z being one of its poles. It is plain

that by making the arc ZN equal to one side of our triangle,
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we can trace the other sides of the triangle, one along each set

of meridians, their point of intersection being the third vertex S.

The lengths of the sides are read off on the parallels of latitude

in each case, and the angles at N and Z are read off where the

sides produced cut the corresponding equators. The methods
which we shall develop in §§ 53-55 are essentially representa-

tions of the above spheres on a plane or planes.

Spherical Trigonometry has its origin in the problem of

finding the length of time a heavenly body vrith a given

declination remains above the horizon at a given latitude. This

is evidently (§ 44) the problem of solving the triangle ZNS
(fig. 9), where S is the position of the body and where ZS is a

quadrant. The ancients, having none of the modern trigono-

metrical formulge, could only solve the problem graphically by
a projection, and for this purpose designed the famous Analemma
of Ptolemy, which we now proceed to describe.

§ 53. The Analemma.*—Project orthogonally the network

having N as pole, on the plane containing N, Z, and the centre

of the sphere (the meridian plane). Then the meridians project

(fig. 15) into ellipses having NN' as major axis ; and the parallels

of latitude, which give the declination, project into straight

lines parallel to X'X (since their planes are perpendicular to

NN'). In the figure the complication of a large number of lines

on a small diagram has been avoided by giving only one of the

straight lines (x'O'x) and only six of the ellipses which mark
oflT angles of 30° (two hours) at N. With Z the zenith as pole

we should have an exactly similar projected network, but as

NZ is a variable length, it cannot be drawn fixed upon the

other network. The equator of Z, P'OP is represented by a

revolving '"pointer" turning about O. At sunrise ZS is a

quadrant, so that the projection of the sun S is always on the

pointer if NOP be equal to the latitude of the place. Further,

if we read off XV or Xx equal to the declination (south in the

figure), we have the parallel x'x on which the sun lies, so that S

is now determined; and by means of the ellipse (hour-angle)

which passes through S we read off' on X'X the time before

noon at which sunrise occurs. In the figure this is indicated as

* For a historical account see Delambre's Hlstoire de Vasironomie cmeienne,

torae ii. pp. 458-503.
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five hours, i.e. 7 a.m., so that the length of day is ten hours.

The ellipse passing through S and Z gives the angle NZS, i.e.

the azimuth (measured from the north) at which the sun rises.

If the analemma is to be used at a fixed latitude and for this

problem only, the ellipses of which ZS is one, might be per-

manently drawn on the figure ; but since their equator P'OP is

given, we can equally well mark their intersections upon it and

read ofi" the azimuth directly. This graduation on the pointer

Fig. 15.

will plainly be r sin A, where A is the azimuth measured from

its east-west direction—the meridian marked VI. On the

early analemmas this was effected by drawing on the figure a

family of circles about O as centre, their radii r sin A being

obtained graphically from a right-angled plane triangle of

angle A.

We can now extend the construction so as to solve triangles

of any sides. Let two of the sides be 90° — 0, 90° -1-5, as before,

but let the third side be, say, 90°+ a. Take off" with the dividers

from OP a length = r sin a, and so find a point S' between S
and X such that the perpendicular from it to PT equals this

length. Then the ellipse through S' gives the new angle at N.
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For 0'S = rcosZNS (where r is the unprojected distance

from S to the axis NN') = r cos S cos ZNS.
Similarly

0'S' = rcos8cosZNS'.

= r cos 8

SS' = r cos 8 (cos ZNS - cos ZNS')

cos Z8 - cos ZN cos NS cos ZS'— cos ZN cos NS'

sin ZN sin NS sin ZN sin NS'

? cos 8 cos (90° + a) r sin a r sin a

sin (90° - (/)) sin (90° + 8) cos <j> g^^ QSS'

which ao^rees with the construction.

§ 54. Ohauvenet's Solver.—We owe to Chauvenet a device

whereby all the parts of a triangle except one angle are read oif

at one setting of a simple mechanism. From a point on the two
spherical networks described in § 52 which is 90° from both

N and Z, project (stereographically) the two spheres on to two
superimposed meridian planes. Let the one nearer to the point

of projection be transparent, so that both projected systems are

visible. The projection will cover both planes to infinity, but

the remoter hemispheres will project into circular areas having

the projection of the centre as common centre, and having the

projections of N and Z on the circumferences. By this projec-

tion all circles, great or small, project into circles, and the meridian

circles all pass through the projections of their respective poles,

the latitude circles cutting these orthogonally and having their

centres on the corresponding axis. The continuous lines of

fig. 16 show the projection a£ the N system, while the broken

lines represent the Z or transparent system. The axes are

inclined in the figure at about 38°. If R be the radius of the

figure, we can easily show that the radius r of the projection of

a small circle of latitude cp is given by 7' = R cot 0, and that the

centre of the projected circle is at a distance R/sin from

along the axis NS. Also if be the angle made by one of the

meridian circles with the plane of projection, then the projected

circle has a radius = R sec d, and has its centre at a point distant

R tan 6 from and passes through N and S. From these data

the circles are easily constructed.

If now we rotate the transparent network having Z as pole
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about the common centre, until ZN measures one side of the

triangle, then the other sides and angles can be traced along]

one or other of the networks and the unknown parts read oi

on scales along the equators and round the circumferences.

In fig. 16 a triangle ZNo- (o- not shown) is picked out inj

heavy lines having an angle at Z=185°, the side ZN^SS"", and

the side Zo-= 45°. A device of this kind has been placed on the

N

market * in which the circles have a diameter of about 8J inches,

and enable one to read to about half a degree ; this is sufficiently

accurate for certain navigation problems, e.g. finding the course

for great circle sailing (§ 43). By means of it we find that for

the above triangle No- = 75J° and ZNc7-31°.

§ 55. Cylindrical Proj action. t—Imagine two closely fitting right circular

cylinders, the inner one being transparent, touching the two spheres of § 52 along

the great circle ZN. If we project the two networks having Z and N as poles on to

* It is published by Reimer of Berlin, after the designs of E. Kohlschiitter. A
larger one, 18 inches in diameter, constructed by Mr W. B. Blaikie of Edinburgh,

was used by Sir F. W. Dyson in researches on the systematic motions of the stars,

cf. Month. Not., R.A.S., vol. Ixx. (1910), p. 416.

t The author believes that this method has not been i>ublished previously.
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these tangential cylinders from the common centre {gnomonically) and then remove

the spheres, we could evidently solve any triangle in the following manner. Rotate

the cylinders until the arc joining ZN is, equal to one of the given sides, then trace

out the other two given parts along the corresponding networks and read off the other

parts (all except the angle opposite the given side) from them. If we cut the cylinders

open along a generator and flatten them out on a plane, we can vary the side ZN hy a

simple translation. We can now imagine the two superimposed plane networks en-

larged to any extent and retain any area of one of them, say, a square foot of the

lower one, retaining also that part of the transparent one which is necessary for

solving triangles to the required accuracy which come within its scope.

In fig. 17 half the circumference of one cylinder is given, allowing ZN to vary

between 0° and 180°. The other (transparent) sheet is supposed to be placed upon it
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with the axes coincident but displaced relatively to each other by an amount equal

one side as read off along the base. The equation of the network is

cos^ x= {l+y^) cos- 0,

where
<f>

is the side NS, i.e. the polar distance ; and

y= smx tan 6

where 6 is the angle ZA^S.

§ 56. Slide Rule for Sine Formula.—The formula ^Hl^r^^H?:^ which, beinj
sm a smo

in product form, is convenient for logarithmic calculation can be adapted to graphical

calculation as follows :

—

Construct a tongue T to slide in a groove (fig. 18) in a

framework M. Suppose, for a moment, the tongue madeT
w\ ^^

M M
B

A^
A

flush with the framework at one

point on the other line ofcontact.

end A^ ; and let B^ be any

On the framework construct

the scales ^o.4=;ulogsin ^, 5q5= ;u log sin ^ for a succes-

sion of values of A and B where ;u is any arbitrary constant.

On the tongue construct the scales A^a— ix\og%va.a + a.^

5o& = ;t log sin & + a. Then ^« = ^o^ -^0^ =

, sin A
sma

Similarly Bb = /x\og
sini?

sin&
a, so that, since these are equal,

ab and AB are parallel. If therefore the tongue T be moved

in the groove until the points reading the given values of

B and b coincide, then the required value of a is read ofi on

its scale opposite the given value of A. The constants fi, a

and the position of Bq are at our disposal, so that we can

graduate the scales to read to any desired degree of accuracy,

and can bring the required parts of the A and a scales as
Fig. 18.

well as those of the A and B scales opposite each other

§ 57. Straight-Line Nomograms.—The following nomo-

grams, due to d'Ocagne, are simpler than the preceding ones

in that the sliding (transparent) diagram has in each case been

reduced to a straight line joining three points* We shall show

that a nomogram can be constructed for each of the four-variable

equations which solve the cases (2.2), (3,1), and (4.0) ; these we
shall take in turn in the following sections. Each of them has

two parallel straight lines A^u, B^v (fig. 19) along which are

graduated scales. By means of these scales, points are determined

on AqU, BqV (one on each scale) to represent the values of two of

the four variables. A third point (not on either of these lines)

is determined to represent by its position the remaining two

* The whole subject of nomography has been developed extensively since 1 884

by Maurice d'Ocagne, now Professor at the Ecole polytechnique in Paris. Figs,

20-23 are reproductions of diagrams due to him. Of. S. M. F. Bull. 32 (1904),

p. 196.
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variables, and it is the fundamental property of the nomogram
that the straight line joining the two points on the scales passes

through this third point. The details of y
construction and application in each case

are as follows :

—

§ 58. The Case (2.2),—To determine

the value of the fourth variable in the

equation

sin A sin & = sin B sin a

when the values of three are known.

Along the opposite sides of the

straight line A^u (fig. 20) construct two
scales, viz. A^A= /Xj sin A and A^a = jul^ sin a for a succession of

values of A and a, where jul^ and /ul^ are any arbitrary constants.

Along opposite sides of the parallel straight line B^v construct

Fig. 19.

Fig. 20.

the two scales BqB = /Xg sin B and Bfi = fx^ sin h for a succession

of values of B and 6, where /xg and fx^ are any arbitrary constants

satisfying the equation ^^fx^ — ix^fx^. Join A^B^. Then the method
of application is as follows, supposing that a is the required
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variable. Join the points A, B, corresponding to the given values

of A and B by a straight line cutting A^B^ in P. Join P to tl

given point on the h scale by a line cutting A^u in a. The seal

A^a gives us the required value of a.

For, by similar triangles,

A^a _ Bq6 . [X.2 sin a /x^ sin b

AqA BqB /Xj sin A /x^ sin B

which is true by the given equation and the equation c^ = ^,

Three of the constants are at our disposal, and we can choose

the positions of Aq and Bq arbitrarily. We can. thus construct

our scales to read to any degree of accuracy and bring the points

A, a, B, h more or less opposite to each other, if (as is the case

in many practical problems) the variables are limited to a

moderate range of values. •
§ 59. The Case (3.1).—To determine the value of the fourth

variable in
cos a == cos b cos c + sin 6 sin c cos A . . . . (

Iichen any three are given.

Along the lines A^u and B^v (fig. 19), whose equations are

05 = — ^ and x= +S, construct the two scales A^a and BJ) such that

u = A^a = /x^ cos a

?; = Bq6= -jx^co^Aj

where jm-^^ and yUg are arbitrary constants. We shall prove that,

provided a and A continue to satisfy (1), the straight line aA
always passes through the point w^hose coordinates are

^^^fxj^nb^nc_-jx^
^ ^ , . (2)

fx^ sin & sin c + ju-g

jx^fx^cosbcosc_
^ ^ ^ ^ ^3^

/Xj sin b sin c + ix^

For, substituting for cos h cos c from (1) and writing cos a = u//>ii,

cos A = — v/fx^, (3) can be written

_ IX.2U + /x^v sin b sin c /j\

fX2 + fx^ sin h sin c

Again, by (2) we have
• 7 • 8 + x /f-x

fx^sinbsinc = fx.2^ . . • • (0/
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SO that, substituting in (4), we easily obtain

2% = S{u + v) - x{u -v) . . . • (6)

Now the condition that the three points ( — 8, u), (x, y),

(S, v) be collinear is

X 1/ I

8 u 1

8 V 1

(7)

This is equivalent to (6), so that the collinearity is proved.

If now we treat (2) and (3) as freedom equations (with two
parameters h and c), we can draw two families of curves, one by
keeping h constant, the other by keeping c constant. These

coincide with each other on account of the symmetry of (2) and

(3). To any particular value of h corresponds a certain curve

(a conic) and to any value of c another conic ; the two intersect

in the point (2) (3), which lies on the line joining aA.

To show that these curves are conic sections we may proceed

as follows :

—

Substituting from (5), we can write (3) in the form

7 f S+^, \
/Xj/Xg COS b COS c = y[ix.2

^
+ 1^2)

i.e. fjL-^ cos c = ^-^ sec b . . . • (8)

.
•. smce

/^i
sm c = fx^

^
cosec b

we have, on squaring and adding,

fjL-^^
(8 -xy = /X2^{S -rX]^ cosec^ b + 4:8'^y^sec'^b . • (9)

which represents a family of ellipses having h as parameter,

provided yU2>Mi' Eliminating h instead of c, we obtain the same
family of ellipses with c as parameter.

We can write (9) in the form

4Sy tau^ b + {48V + f^-iK^ + ^f - H-iK^ - ^f} tan2 b + /^/(S + xy = (10)

and regarding (10) as a quadratic in tan^ b its discriminant gives

us the envelope of the family of ellipses (9).

The discriminant reduces to

48V = />tx2(8-^)'±W2/(S + ^)-/^2'(^ + ^)-
• . (11)
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which represents four straight lines forming a quadrilateral ; t

equations of the sides are

287/= a:(//2 + /^i) + 8(/x2-/Xi)

28?/ = - x{fx^ - /xj) - 8(/x2 + /^i)

28?/= -:c(/x2 + /Xi)-8(/x2- i)

Each of the ellipses is inscribed in this quadrilateral

The accompanying figure (fig. 21) corresponds to the case i

(l:

no'.
ISO'. \v7*.'

y
.

2S0-

lif^. ^
not

J^V-.-
no- 1^^.V*<'?

no: \^^V\~^^H^ Y^-v^v<yj<7.

lot

h-v \s^2o:

(a) SO'.% "ia.c) L~1^ V^ ;0 Bo
<i \

^ \ ^ 'o.- JC

80^

-t^S0'

/eot

7«f

^1 J^/yZ
4-0 f

SO-.

\^^^l\f

rt'
-^

I ."-yX^"

tor^y^Ol

3a''^
20K

Fig. 21.

(A)

which the axes are rectangular and
ij.^
— }x^. Two of the sides of

the enveloping quadrilateral (the second and fourth of group (12))

become y ^fl?, and2/=-yi». As an example, suppose A= 60'

6 = 10°, and c = 40°. We find the two curves on the (6, c) scale

reading 10° and 40° and find their two intersections
;
joining

these by a straight edge to the point 60° on the A scale and

producing it, we get the two possible values of a, viz. 134° and

36°, other conditions deciding which we need.
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§ 60. Particular Application.—An interesting and practical

special application of this nomogram is quoted by D'Ocagne.*

It was required to prepare the observations taken with the

equatorial telescope at the Paris Observatory, for which

12 he II res
11

(Ai)

5

.. 4

'0(5)

1

heure

Fig. 22.

= 48° 50' 11''. We have an equation of the form (3.1) con-

necting the variables zenith distance (Z) (SZ in fig. 9), declina-

tion D, and hour-angle M (h of ^g. 9). The side ZP = (9O°-0)

is constant. Therefore, writing in equation (1) of last section

a — z,h — 90° — (p,c = 90° — D, A = AI, we see that the two scales at

* Comptes rendus, t. cxxxv., 1902.
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the sides and the ellipse 6 = (90° — 9!)) out of the network aM
sufficient. This ellipse must be graduated at the points when
the various c ellipses if drawn would intersect it. Fig. 22 gives"

the resultant nomogram where /^^ has been taken * = 2yU2, am
the diagram is sheared so as to bring the required parts o^

the scales opposite each other. The figure must be inverte(

to make it agree with fig. 21.

§ 61. The Case (4.0).—To determine the values of the fourth^

variable in
cos B cos a = cot c sin a - cot C sin B . . . ( 1

)

connecting the four consecutive parts c, B, a, G, when the values

of any three are given.

Along the two lines A^u and BqV (fig. 19) construct the tw
scales A^a = /u-^ cot c = u; B^A = — ^xo cot C = v.

Then we can show that, provided c and C continue to satisfy

equation (1), the straight line Aa always passes through the poin

given by

— Sif^l ^^^^ ^ ~" /^-^ ^^^ ^ /o

fjL^ sin B + /Ag sin a

i
Y

\
_fx^fi^cosBcosa_

^

. . (3)
/Xj sin B + /^2 sin a

For, substituting for cos B cos a from (1) and writing cot c = ui/uL-^^,

cot C= —v/iuL^, (3) can be written

_ /Xji; sin B -f- y"-2^ sin a /-.

Again, by (2) we have

/x,j sm B = fx.y sm a . . . . (5)

so that, substituting in (4), we easily obtain

'2,6y = h{u + v) - x{u - v) . . . • (6)

which, as in § 59, shows that the three points { — S, u), {x, y), and

(<5, v) are collinear.

If now with these two equations we construct as, in the

preceding case (§ 59), the two families of curves, one keeping a

* This changes the ellipse into a hyperbola, cf. equation (9) of last section.
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constant, the other keeping B constant, we obtain a doubly-

infinite set of conic sections such that the two curves correspond-

ing to the given values of a and B intersect in the point (2) (3)

which lies on the line joining ak. (fig. 19).

(cj (C)

Fig. 23.

To show that these curves are conies, we may proceed as

follows : Substituting from (5), we can write (3) in the form

t^iH cos B cos f^ + x

S - x'

I.e.

.'. smce

a, COS B = - "^ tan a
h-x

. x^ h + x
fx, sm 13 =

^; fji,2 sm a
o — X

we have, on squaring and adding,

fx^'^(8 - xf = (8 + a;)Vs^ sin2 a + ihhf tan^ a,

a family of hyperbolae of parameter a, provided iul-^>jul2.



66 ,.*: Tfi^/.-saLUTiQW. of: spherical triangles [ch. vi, 61]

Eliminating a instead of B, we have the other family,

/>ti2(S - xf^ (8 + x)V2^ cosec2 B - 48V sec2 B

with parameter B. They are hyperbolae provided /Xg^/Xi-

The accompanying figure (p. 65) has been drawn for

case in which the axes are rectangular and /Xi = M2' ®^ i^^t both

sets of curves are hyperbolse. The method of using is the

same as in the preceding case. Quite a small nomogram of

this kind would solve with sufficient accuracy the problem of

great-circle sailing (§ 43).
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